
Evolution on FPGAs for

Feature Extraction

Reid Porter, B.E. (Hons), B.Inf.Tech. (Hons)

Submitted for the degree of Ph.D.
2001

Queensland University of Technology
School of Electrical and Electronic Systems Engineering

Cooperative Research Centre for Satellite Systems

ii

Keywords

Cellular Automata, Custom Computers, Evolutionary Algorithm, Evolvable

Hardware, Feature Extraction, FPGA, Genetic Algorithm, Image Processing,

Morphological Networks, Multi-Spectral, Neural Networks, Pattern Recognition,

Reconfigurable Computers, Remote Sensing, Stack Filters.

iii

Abstract

Evolvable hardware circuits are presented for solving pattern recognition problems in

image data sets, especially for feature extraction in remotely sensed multi-spectral

imagery. The circuits are targeted at Field Programmable Gate Arrays (FPGAs).

FPGAs are digital circuits that can be configured to meet application specific

computational needs by downloading a configuration bit-string. Evolutionary

Algorithms are optimization techniques that are unique in their simplicity and

therefore their flexibility. This flexibility has led to a hardware design methodology

known as Evolvable Hardware, which uses Evolutionary Algorithms to explore novel

hardware solutions. FPGAs are ideal targets for Evolvable Hardware because the

programming bit-string is a good match to the genetic bit-string used in Evolutionary

Algorithms. However, experience has shown that evolving hardware solutions using

the raw configuration bit-string is often impractical due to the large design space that

must be explored.

Evolvable FPGA circuits are described where the design space is severely constrained

to an interconnected array of meaningful high-level operators. First, novel variants of

Cellular Automata are evolved on FPGAs to solve binary pattern recognition

problems. These experiments constrain the FPGA bit-string to a meaningful network

of Cellular Automata building blocks. This means problem specific constraints can be

more easily implemented, which leads to a smaller, more relevant design spaces. The

search space is then further constrained to enable the Cellular Automata architecture

to be applied to gray-value image processing, This leads to a class of non-linear filter

known as Stack Filters. Stack filters are found to have several properties desirable to

FPGA implementation, but lack sufficient computational power to solve practical

gray value texture classification problems.

Second, evolvable network architectures are implemented on FPGAs to solve

practical feature extraction problems that are found in multi-spectral images. These

experiments constrain the FPGA bit-string to a pipelined array of high-level nodes.

The computational power of the Stack Filter is enhanced by considering the set of

iv

Generalized Stack Filters, which leads to the class of Morphological Networks. A

Morphological Network node is approximately one quarter the size of a Neural

Networks node when implemented on FPGAs. However, the Neural Network has

superior performance on multi-spectral feature extraction problems in experiment.

Both networks perform poorly on broad area features that include many spectral

signatures.

Third, a novel network node is proposed that addresses this problem by exploiting

both spectral and spatial information. The node includes both Morphological and

Neural Network functionality. By using high-level network building blocks, the

design space is directed towards solutions that are particularly useful for the feature

extraction problem. This includes a rich design space of linear and non-linear filters

from traditional image processing algorithms.

Finally, the node is used to build multi-layered networks and is applied to a variety of

multi-spectral feature extraction problems. An advanced evolutionary algorithm is

used to optimize the network. Once trained, the network can be applied to large image

data sets with over two orders of magnitude speed-up compared to software

implementations. Promising results are found in comparing the evolvable network

architecture with advanced spatio-spectral software solutions and more traditional

techniques. Results also indicate there is room for future research, and the directions

considered most fruitful are described.

v

TABLE OF CONTENTS

Keywords ...ii

Abstract ...iii

List of Figures ..x

List of Publications..xiii

Declaration ..xiv

Acknowledgments ..xv

1 Introduction ... 1

2 Literature Review.. 7

2.1 Automatic Feature Extraction in Image Data Sets...................................... 7

2.1.1 Preprocessing and Enhancement... 9

2.1.2 Feature Extraction .. 15

2.1.3 Classification.. 21

2.1.4 Discussion.. 25

2.2 Optimization with Evolutionary Algorithms.. 26

2.2.1 Representation.. 28

2.2.2 Genetic Operators... 29

2.2.3 Selection .. 31

2.2.4 Evolutionary Algorithms and AFE ... 33

2.2.5 Discussion.. 37

2.3 Implementation with Custom Computers .. 39

2.3.1 The Building Blocks: Field Programmable Gate Arrays.................... 40

2.3.2 Custom Computers ... 47

2.3.3 Evolvable Hardware ... 53

2.4 Chapter Summary .. 59

3 Design Considerations ... 60

3.1 Division of Labor ... 60

3.1.1 The Fitness Evaluator ... 61

3.1.2 Multiple Fitness Evaluators .. 63

3.2 Chromosome Architectures .. 64

vi

3.2.1 Cellular Arrays for Pixel Parallelism .. 66

3.2.2 Image Pipelines for Instruction-Level Parallelism............................. 67

3.3 Chromosome Configuration ... 68

3.3.1 Rapid Reconfigurability ... 70

3.3.2 Alternatives .. 71

3.4 Chapter Summary .. 74

4 Evolving Cellular Arrays .. 75

4.1 Maximally Parallel Fitness Evaluation... 76

4.2 Evolving Cellular Automata ... 77

4.2.1 The hybrid XC6216 Cellular Automata .. 80

4.1.1 Host Program ... 82

4.1.2 Representation and Schedule .. 83

4.1.3 Experiment ... 84

4.1.4 Results and Discussion ... 86

4.1.5 Problem Specific Constraints.. 88

4.1.6 Summary.. 89

4.2 Evolving Stack Filters .. 90

4.2.1 Introduction to Stack Filters.. 90

4.2.2 Thresholding Stack Filters and Fitness Evaluation 92

4.2.3 Representation and Schedule .. 93

4.2.4 Experiment ... 95

4.2.5 Results and Discussion ... 96

4.2.6 Summary.. 99

4.3 Chapter Summary .. 100

5 Evolving Network Architectures .. 101

5.1 Image Pipeline Fitness Evaluation ... 102

5.1.1 Host Program ... 104

5.2 Network Architectures.. 106

5.2.1 Learning Algorithms .. 108

5.3 Implementation .. 110

vii

5.3.1 The Morphological Perceptron ... 110

5.3.2 The Linear Perceptron .. 111

5.3.3 2-layer Networks.. 112

5.3.4 Hardware Resource Comparison... 113

5.4 Representation and Schedule.. 113

5.5 Experiments with Texture Classification... 115

5.5.1 Results and Discussion ... 116

5.6 Experiments with Multi-Spectral AFE .. 118

5.6.1 Results and Discussion ... 120

5.7 Further Discussion... 123

5.8 Chapter Summary .. 125

6 Evolving Multi-Spectral Networks………………………………..126

6.1 Spatial Processing in Pipelines .. 127

6.2 A Multi-Spectral Network Node.. 128

6.3 The Spectral Processor .. 129

6.3.1 Application to Feature Space .. 133

6.4 The Spatial Processor .. 134

6.4.1 Example Configurations ... 138

6.5 Nodes in Networks ... 141

6.5.1 The Configurable Precision Unit .. 142

6.5.2 Incorporating Band Selection ... 143

6.6 Evolutionary Algorithm.. 144

6.6.1 Representation.. 144

6.6.2 Mutation... 146

6.6.3 Crossover ... 146

6.7 Experiments with Two-Layer Networks .. 147

6.7.1 Experiment ... 148

6.7.2 Evolutionary Algorithm.. 149

6.7.3 Results and Discussion ... 149

viii

6.8 Chapter Summary .. 152

7 Experiments with POOKA.. 153

7.1 Top-Level Architecture... 154

7.2 Host Program and Evolutionary Algorithm.. 156

7.3 Evaluation of POOKA Implementation... 159

7.3.1 Resource Usage.. 159

7.3.2 Evaluation of Speed-up .. 160

7.4 Comparing EA Strategies... 162

7.4.1 Discussion.. 167

7.5 AFE Quality Comparison... 168

7.5.1 Discussion.. 172

7.5.2 Additional Experiments .. 174

7.5.3 Further Discussion.. 181

7.6 Parallel Evolution of Multiple Features ... 182

7.7 Chapter Summary .. 185

8 Discussion…………………………………………………………..186

8.1 Summary of Contributions.. 186

8.2 Towards POOKA II.. 187

8.2.1 Multi-Spectral Data Sets... 188

8.2.2 Bit Widths .. 189

8.2.3 Extending the Spatial Processor.. 189

8.2.4 Nodes as Functions of State.. 190

8.2.5 Fitness Metrics ... 191

8.2.6 Cross-Validation .. 193

8.2.7 Boosting..193

8.3 Conclusion... 194

Appendix A Chapter 6 Developmental Experiments 195

A.1 Experiments with Chromosome Representation 195

ix

A.2 Experiments with the Precision Unit .. 199

Appendix B Everything on the Chip ... 202

Bibliography ... 213

x

List of Figures

Chapter 1: Introduction

Figure 1: EA compared to conventional assemble-and-test design [3]. 2

Chapter 2: Literature Review
Figure 2: A Typical Image Processing Pipeline 8
Figure 3: Multi-Spectral Processing Pipeline 9
Figure 4: Application of Spatial Filters 10
Figure 5: Linear Filter Weight Kernel 10
Figure 6: Example Weight Matrices 11
Figure 7: Gradient Weight Matrices 12
Figure 8: Example of structuring elements in a 5 by 5 Morphological Filter 13
Figure 9: Example of binary Erosion and Dilation. 13
Figure 10: Application of spatial median 14
Figure 11: Examples of Laws 3 by 3 Texture Measures 17
Figure 12: Using multiple rotations of asymmetric structuring elements 19
Figure 13: Feature Space 21
Figure 14: The Perceptron 23
Figure 15: Multiple Layer Network Decision Surfaces 24
Figure 16: A Fitness Landscape 26
Figure 17: The general Evolutionary Algorithm 27
Figure 18: A Typical Chromosome in Genetic Programming 29
Figure 19: The One-Point Crossover Operator 30
Figure 20: Selection Schedule for Rank Selection 32
Figure 21: Overview of GENIE architecture 35
Figure 22: Chromosome representation in the GENIE system [80] 36
Figure 23: Two example Architectures. 40
Figure 24: The XC6216 FPGA by Xilinx 41
Figure 25: XC6216 Logic Block 42
Figure 26: The Virtex FPGA by Xilinx 43
Figure 27: Virtex Logic Block 44
Figure 28: Typical FPGA Design Process 46
Figure 29: Architecture of Splash-2 System [91] 49
Figure 30: Architecture of G800 Custom Computing Board 50
Figure 31: The RCA-3 Architecture 51
Figure 32: The Firebird RCC 53

Chapter 3: Design Considerations
Figure 33: Communications for Fitness Evaluator Architecture 61
Figure 34: The Division of Labor 63
Figure 35: Cellular Array (left) and Image Pipeline (right) 66
Figure 36: Multi-Spectral Image Pipeline 68
Figure 37: The Generalized Chromosome 70
Figure 38: Example of the 2nd Level of Configurability 71

xi

Chapter 4: Evolving Cellular Architectures
Figure 39: Ideal Host/RCC Architecture 76
Figure 40: Actual Host/RCC Architecture 77
Figure 41: One Dimensional Cellular Automata and Rule Table Example 78
Figure 42: Example of Training Images used in Experiments by Sahota [123]. 79
Figure 43: CA Logic Tree 80
Figure 44: Implementation of Logic Tree 81
Figure 45: Tiling CA cells across the XC6216 FPGA 82
Figure 46: Host/CC Communication Required for Chromosome Evaluation 83
Figure 47: a) XC6216 Function Unit and b) Configuration bytes 83
Figure 48: a) Horizontal and b) Vertically Segmented Training Images 85
Figure 49: Comparison of Representations 88
Figure 50: Introducing Problem Specific Constraints 89
Figure 51: Threshold Decomposition of Median Filter 90
Figure 52: Thresholding strategies applied to stack filters. 92
Figure 53: Training and Test Images 96
Figure 54: Results when filters are applied to larger images. 97
Figure 55: Output images using Invariant Thresholding for N=6. 97
Figure 56: Output images using Median Thresholding for N=6. 98
Figure 57: Output images using Median Thresholding for N=12. 98
Figure 58: Output images from Median N=6 solution applied to test images. 99

Chapter 5: Evolving Network Architectures
Figure 59: Pipeline Fitness Evaluator Architecture 103
Figure 60: Overview of Host Program 105
Figure 61: a) Linear Perceptron and b) Morphological Perceptron 107
Figure 62: Morphological Perceptron and Feature Space 108
Figure 63: Learning Algorithm Pseudo-code 109
Figure 64: Morphological Networks Applied to Feature Space 109
Figure 65: Morphological Weight Circuit 111
Figure 66: Neural Network Weight Circuit 111
Figure 67: The 24-input, 4-hidden, 1-output network 112
Figure 68: The AND/OR Output Node 112
Figure 69: A) The Original Image for Texture Classification. 116
Figure 70: Output images on Training Data 118
Figure 71: Multi-Spectral Training Set 119
Figure 72: Multi-Spectral Test Set 120
Figure 73: Output Images on Training Data 121
Figure 74: Output Images on Test Data 122
Figure 75: Generalized Stack Filter and Morphological Network 124

Chapter 6: Evolving Multi-Spectral Networks
Figure 76: Row Buffering for 3 by 3 Neighborhood Generation 128
Figure 77: The Multi-Spectral Network Node 128
Figure 78: 2-input Combiner 130
Figure 79: Arith-Morph-Mux (AMM) Unit 130
Figure 80: If-then-else Communication between 2-input Combiners 132
Figure 81: Results on Feature Space 133
Figure 82: 5 by5 neighborhood of Spatial Operator 134
Figure 83: The Arith-Abs-Morph Unit 135

xii

Figure 84: Order of combination for 5 by 5 ring 136
Figure 85: Encouraging Rotational Invariance 137
Figure 86: Original Image and 5 by 5 Smoothed Image 138
Figure 87: Morphological Erosion and Dilation 139
Figure 88: 3 by 3 Edge Detection and 5 by 5 Edge Detection 139
Figure 89: Max-Min Morphological Range / Min-Max Morphological Range 140
Figure 90: Texture Operators 140
Figure 91: Linear Combinations of Erosions and Dilations 141
Figure 92: The Configurable Precision Unit 142
Figure 93: The 12-band Channel Chooser 144
Figure 94: Decomposition of Representation in Chromosome Objects 145
Figure 95: Hierarchical Implementation of Mutation 146
Figure 96: Hierarchical Implementation of Crossover 147
Figure 97: Crossover in the Network 147
Figure 98: The Two Layer / 5 node network 148
Figure 99: IKONOS Road Finder Training Data and Target Classifications 149
Figure 100: Results of Independent Node Evolution 150
Figure 101: Result of Network Evolution 150

Chapter 7: Experiments with POOKA
Figure 102: The 3-Layer Network 154
Figure 103: Top-Level Architecture for 3-layer Network 155
Figure 104: Host Program using multiple populations 156
Figure 105: 3 Stage Incremental EA 158
Figure 106: The 9 Stage Optimization Cycle 158
Figure 107: Urban Feature Finder Algorithm 167
Figure 108: Example Training Images 170
Figure 109: Comparison of POOKA performance to other classifiers. 172
Figure 110: Cloud Problem 174
Figure 111: Golf Course Problem 175
Figure 112: Urban Area Problem 176
Figure 113: Road Problem 177
Figure 114: Fitness verse generations for the Road 1 problem 178
Figure 115: Summarized results for training images 180
Figure 116: Summarized results for test images. 180
Figure 117: Original Image, Beach target and Water target 183
Figure 118: Single beach classification Multiple target classifications 184

Chapter 8: Discussion
Figure 119: Revised Spatial Processor 190
Figure 120: A Cellular Architecture Interpretation 191

xiii

List of Publications

Chapter 3

Porter, R. and N. Bergmann, A generic implementation framework for FPGA based

stereo matching. In TENCON’97: IEEE Region 10 Annual Conference. Speech and

Image Technologies for Computing and Telecommunications. 1997. Brisbane,

Australia.

Porter, R., Implementing GA Accelerators using FPGAs. In GECCO-99: Student

workshop of the Genetic and Evolutionary Computation Conference. July 1999.

Orlando, Florida.

Porter, R, K. McCabe and N. Bergmann, An Applications Approach to Evolvable

Hardware. In 1st Nasa/DoD Workshop on Evolvable Hardware. July 1999. Pasadena,

California.

Chapter 4

Porter, R. and N. Bergmann, Evolving FPGA Based Cellular Automata. In SEAL'98:

Simulated Evolution and Learning. October 1998. Canberra, Australia. Springer-

Verlag.

Chapters 5 and 6

Porter, R. M. Gokhale, N. Harvey, S. Perkins and C. Young, Evolving Network

Architectures using Custom Computers for Multi-Spectral Feature Identification.

Accepted for publication in 3rd Nasa/DoD Wokshop on Evolvable Hardware. July

2001. Long Beach, California.

Appendix B

Perkins, S., R. Porter and N. Harvey, Everything on the Chip: A Hardware-Based

Self-Contained Spatially-Structured Genetic Algorithm for Signal Processing. In

Evolvable Systems: From Biology to Hardware. 2000. Scotland, UK: Springer

Verlag.

xiv

Declaration

The work contained in this thesis has not been previously submitted for a degree or

diploma at any higher education institution. To the best of my knowledge and belief,

the thesis contains no material previously published or written by another person

except where due reference is made.

Reid Porter

May 2001

xv

Acknowledgements

This thesis is based on 4 years of research on my part, but would not have been

possible without inspiration, education and financial support from a large number of

people.

My first two years of research at Queensland University of Technology was made

possible by generous support from the Australian government and particularly the Co-

operative Research Center for Satellite Systems. Thanks to my supervisor Neil

Bergmann whose ability to see the point, even when provided with nothing but

conceptual hunches and awkward associations, never ceases to amaze me! Thanks

also to Mohammed Bennamoun for cherry smiles and good advice.

The last two years of this thesis brought me to Los Alamos National Laboratory, and

particularly the Space and Remote Sensing Sciences group. It has been an amazing

opportunity, and my brain continues to reel with the stimulus it receives from so many

people. Thanks John Szymanski for thinking of my future and providing remote

sensing insights. Thanks Jeff Bloch for encouraging new ideas by setting example

through....as you say, a manager who codes! Thanks to Maya Gokhale, who has given

me significant freedom, been nothing but encouraging and provided clear direction

many times.

Thanks to the GENIE team, there's the source: a fountain of information at my

disposal. Neal Harvey of course for morphology, a local library, and the Semi

Autonomous Machine (SAM) to observe. Simon Perkins, whose clarity of explanation

conveyed more information to me in these last two years than I could possibly have

learnt by myself. Cody Young for crazy conversations and ideas that will prove the

long term winners! James Theiller for keeping me honest, and proof that creative

ideas and well-grounded science are not mutually exclusive! Steven Brumby for

drawing connections and great P.R.(PAC-8 goes national?).

Thanks Chisty of course who not only contributed significantly in thoughts and ideas,

but also kept me loved and happy and gives the whole thing point.

1

Chapter 1

Introduction

This thesis, at heart is about building hardware for gray value, color and multi-

spectral image processing. This is not a new thing, and many researchers throughout

the world continue to work on this problem from a great many directions. Words by

Kendall Preston are particularly appropriate to the underlying approach of this thesis:

“Digital filters for image analysis are often considerably different from those in other

areas… Speed, simplicity, and low cost are the primary requisites.” (1983) [1].

The experiments of Preston provide a clear demonstration of solving problems with

the resources at hand; that is, trying to find solutions to problems that can be

implemented with the smallest number of building blocks available in digital

hardware.

This thesis focuses on the problem of Automatic Feature Extraction1 (AFE) in image

data sets. AFE attempts to find algorithms that can consistently separate a feature of

interest from the background in the presence of noise and uncertain conditions. In a

more general sense, this is an optimization problem. Preston's minimalist approach is

particularly attractive within the context of optimization problems. It may be difficult

to apply a fixed set of hardware building blocks to a particular problem because

algorithms are usually very abstracted from the hardware. It is possible however that

an optimal arrangement of the fixed set of building blocks may be sufficient for

solving the problem.

1 While Pattern Recognition may be considered a more technically appropriate term, AFE is used
throughout this thesis since it is indicative of the type of pattern recognition problem addressed i.e.
finding features of interest in multi-spectral data sets.

2

In this thesis the building blocks are Field Programmable Gate Arrays (FPGAs). A

number of FPGAs are combined, usually with local memory, on a plug-in board that

is called a Custom Computer (CC). Software applications exploit CC by designing

custom circuits for the computationally intensive parts of an algorithm. The host and

CC are usually tightly coupled through a global bus, and therefore, an application can

benefit from the flexibility of software as well as the performance of the specialized

hardware.

This flexibility of CC has been identified as particularly useful in optimization

problems [2]. This is because the implementation requirements of optimization

problems usually vary from one problem to the next. The optimization techniques

used in this thesis, and for which this is particularly true, are Evolutionary Algorithms

(EA). EA are computationally intensive but are unique in their flexibility. EA can be

used to optimize almost anything or any structure for a particular problem. This

flexibility has led to their wide spread use in the field of evolvable hardware. Figure 1

illustrates how EA design is often considered in the field of Evolvable Hardware.

Small box
of parts

Big box
of parts

Apply rulesDesign
Algorithm

Assemble
and Test

Evolutionary
 Algorithm

 Human
Design Space

Inspiration

Space of all designs

Figure 1: EA compared to conventional assemble-and-test design [3].

3

Traditional assemble-and-test of digital circuits applies top-down rule based

approaches. Often assumptions are made, and constraints imposed in order to make

solutions tractable. These constraints lead to solutions from a sub-space of what can

be considered the total space of all possible solutions. In the EA assemble-and-test,

the search can be performed without constraints and the larger space explored. In this

thesis, EA are used to explore this larger space of designs for hardware efficient

solutions to AFE problems. Before this approach can be taken, it is important to

realize that constraints introduced by human designers are not necessarily a bad thing.

In fact, it can be argued that many human design spaces, particularly those found

through human inspiration, are particularly useful for solving a problem. It is

therefore important to be familiar with traditional design spaces. Once these are

understood, constraints can then be relaxed and hardware efficient solutions found.

A problem of particular interest to this thesis is AFE in multi-spectral, remotely

sensed imagery. Increasing numbers of earth observing satellites are collecting raw

image data. At the same time, sensor technology is rapidly developing. Images are

now taken at ten to hundreds of spectral channels and at increasing spatial resolutions.

The typical image cube2 has an order of magnitude more data than single channel

gray-scale or 3 channel color data sets, and is likely to grow. To find features of

interest within these large amounts of data is a time consuming and costly process and

therefore AFE is an attractive alternative.

This thesis develops high-throughput AFE algorithms in hardware. Several

advantages of implementing an AFE algorithm in hardware are immediately obvious:

• Data from high-volume satellite sensors is usually collected in large image

databases in a ground-based station. Current AFE algorithms, based in software,

pose a computational bottleneck in capitalizing on this large data resource.

Hardware AFE would enable these large databases to be searched and cross-

referenced at speeds an order of magnitude greater than software implementations.

• Data flags specifying regions of interest could be automatically generated to

reduce the amount of raw imagery a human analyst has to inspect.

2 An image with multi-spectral channels can be visualized as an image cube by stacking the images of
different wavelengths on top of each other.

4

• Content-based indices for user- defined features of interest could be generated on

demand at useful speeds.

• Eventually AFE hardware could be moved to the sensor and high level

information extracted as the data is collected.

• Real-time extraction of high-level information would also be benefit to secondary

sensors as a means to narrow search parameters and enable real-time response in a

dynamic environment.

• As satellite data volumes increase, so does the bandwidth requirements for

communicating data to the ground station. Eventually high-level information from

AFE could be used to choose the most relevant information for selective

download across a limited communications channel.

In order to capitalize on these advantages, there are several problems that must be

addressed. Traditionally, AFE algorithms are developed in software, and then if

possible, ported to dedicated hardware systems. This approach suffers from long

development times and is therefore rarely seen in practice. This thesis investigates an

alterative, suggested by the evolvable hardware paradigm, and attempts to answer the

question: can we find hardware solutions to AFE problems directly? In answering this

question, this thesis will investigate which design spaces are most suitable for

hardware efficient AFE. Problems faced in traditional software AFE are also

considered in this thesis, although to a lesser degree than a PhD focused on software

solutions. These problems include: Does the AFE hardware have sufficient

complexity to fit the training data? How does optimized hardware perform on out-of-

training data, or how well does it generalize? Generalization is perhaps the most

important aspect of AFE problems and is critical to the eventual goal of automatic

intelligent processing of large volume data sets. While this thesis does not attempt to

address theoretical aspects of generalization (a topic that has made significant

advances in recent years), quantitative testing of generalization is used throughout the

thesis to guide design choices.

The rest of the thesis

The rest of the thesis is now described chapter by chapter. This is to direct readers

towards particular aspects that they may find most interesting. Introductions at the

5

start of each chapter and Chapter Summaries at the end of each chapter provide a

more detailed roadmap, which readers may find useful.

Chapter 2, Literature Review: Three fields of study are described. Section 2.1 defines

the problem: Automatic Feature Extraction and describes the conventional

approaches, or human inspired design spaces that are currently used. Section 2.2

provides an introduction to Evolutionary Algorithms. Their application to AFE is

described in Section 2.2.4. In Section 2.3 the hardware building blocks are described

both in terms of Field Programmable Gate Arrays, and Custom Computer

architectures. Section 2.3.3 describes work in evolvable hardware and other research

efforts where EA has been used in combination with CC. The Chapter Summary in

Section 2.4 provides a more detailed description of the thesis approach with respect to

reported literature.

Chapter 3, Design Considerations: This chapter is of most interest to a reader who

wishes to implement EA experiments using custom computers. It provides

introduction to the major design choices as well as more detailed description of

architectures used in this thesis.

Chapter 4, Evolving Cellular Architectures: This chapter is dictated largely by the

architecture of the XC6216 FPGA. This FPGA does not have sufficient resources to

solve practical AFE problems, and therefore experiments explore more theoretical

architectures. These architectures include cellular automata in Section 4.1 and stack

filters in Section 4.2. Experimental conclusions, which are presented in the Chapter

Summary, provide a firm foundation for the approach used in subsequent chapters.

Chapter 5, Evolving Network Architectures: In this chapter, the development of

practical AFE hardware begins. It introduces network architectures and explains why

they are desirable in hardware implementations. This chapter implements and

compares two types of network architecture. The first is Neural Networks, which have

received considerable attention for solving problems related to AFE. The second is

Morphological Networks, a recently introduced variant that have a close relationship

to many algorithms in image processing, and can be more efficiently implemented on

FPGAs than Neural Networks.

6

Chapter 6, Evolving Multi-Spectral Networks: This chapter represents the major

design contribution of the thesis. It builds on Chapter 5 and develops a novel network

node that is particularly suited to AFE and multi-spectral data sets. It implements a

combination of spectral and spatial using hybrid Morphological-Linear building

blocks. These building blocks can be efficiently implemented on FPGAs and have

many properties desirable for AFE.

Chapter 7, Experiments with POOKA: This chapter makes an assessment of

techniques developed in the thesis. POOKA is the name given to a 3-layer network of

the multi-spectral nodes developed in Chapter 6. This chapter makes a detailed

evaluation of the architecture in terms of both implementation using Custom

Computers, and quality of AFE algorithms that it can produce. POOKA is compared

to a number of more conventional AFE techniques.

Chapter 8, Discussion: This chapter concludes the thesis. The major contributions are

summarized and directions of future work are discussed.

7

Chapter 2

Literature Review

This thesis draws from three fields of study. The first field defines the problem:

Automatic Feature Extraction (AFE) in multi-spectral imagery. In Section 2.1 we

introduce AFE and briefly describe conventional approaches. Particular attention is

paid to linear and non-linear spatial filters.

The second field is the optimization technique: An introduction to Evolutionary

Algorithms is given in Sections 2.2.1 through 2.2.3. Application of EA to AFE related

optimization problems is described in Section 2.2.4. The motivation for hardware

acceleration of EA experiments is presented in Section 2.2.5.

The third field of study concerns the implementation: Field Programmable Gate

Arrays are the fundamental hardware building blocks and are described in Section

2.3.1. Their use within custom computers is described in Section 2.3.2. The field of

Evolvable Hardware, which combines the fields of EA and FPGAs is described in

Section 2.3.3. The main topics relevant to latter chapters of the thesis are summarized

in Section 2.4.

2.1 Automatic Feature Extraction in Image Data Sets

Extracting useful, high-level information from images in the presence of noise and

uncertain conditions is a process that humans do well but computers find hard. The

type of high-level information considered useful depends on the application.

Examples of applications include object/target detection and tracking, often used in

surveillance and robotic systems, and defect / fault detection often found in automated

production systems. A problem of particular interest to this thesis is image or scene

8

classification in remotely sensed imagery. High-speed multi- and hyper-spectral

sensors are producing increasing volumes of raw image data. To develop algorithms

that exploit multi-spectral data cubes is a time consuming and costly process and

therefore automatic feature extraction (AFE) algorithms are an attractive alternative.

In image data sets, AFE is usually decomposed into a processing pipeline with raw

image data (taken from a sensor) as input and the desired information as output.

Figure 2 depicts this processing pipeline.

Figure 2: A Typical Image Processing Pipeline

• The first stage of the pipeline is concerned primarily with removing sensor

noise and attempts to ‘enhance’ an input image to make subsequent analysis

easier. This type of processing is discussed further in Section 2.1.1.

• The second stage then attempts to extract quantities that are the most relevant

to a particular problem and essentially derives cues from which high-level

decisions can be based. This is known as feature extraction3 and is discussed

in Section 2.1.2.

• The third stage then uses the cues to decide whether regions of interest in the

image. This is known as classification and is described in Section 2.1.3.

• Many variants and extensions of this basic pipeline exist. For example many

pipelines include a segmentation step [4] where pixels are grouped into

coherent objects.

3 Not to be confused with Automatic Feature Extraction which concerns high-level user defined
features of interest.

High-level
Information

Preprocessing
Enhancement

Feature
Extraction

Classification
Raw
Image

9

In multi-spectral data sets, a single scene is imaged at many different wavelengths.

This means the image pipeline of Figure 2 is extended to include multiple input

images. An example of this extended pipeline is illustrated in Figure 3. In this figure

preprocessing is not shown. In the image data sets used in this thesis, significant

preprocessing, such as calibration and registration, is performed automatically as the

data is collected from the sensor. It can be seen in Figure 2 that the Feature Extraction

stage for multi-spectral data sets becomes a multiple-input, multiple-output

transformation.

Figure 3: Multi-Spectral Processing Pipeline

2.1.1 Preprocessing and Enhancement

Algorithms used for image enhancement and feature extraction are closely related.

Both types of processing attempt to reduce noise and extract useful information for

subsequent processing. Traditionally, image enhancement includes point operators,

spatial operators, histogram modeling and transform operations [4]. Histogram

modeling and transform techniques are applied globally. This means they use

information that is calculated by considering all pixels in the image at one time. These

algorithms are more expensive to implement in hardware than point and spatial

operators, and often require multiple passes through an image. Therefore, they are not

considered further in this thesis.

Point operators are applied on pixel-by-pixel basis and include clipping, thresholding,

pixel scaling, and range manipulation. Many linear and non-linear (e.g. log, eX)

point-to-point transformations can be used. Such basic operations are described in

detail in most image processing texts [5], [4].

10

Spatial filters are a common class of algorithm that is used extensively in image

processing and in latter chapters of this thesis. These filters are applied to a finite

spatial neighborhood of an image and implement both linear and non-linear functions.

Figure 4 illustrates the how the spatial filter is applied for a 3 by 3 neighborhood. The

spatial filter is applied to all pixels in parallel. It can be seen that when the filter is

applied to edge pixels some of the neighborhood is not defined. One way to deal with

this problem is to buffer the image before applying the spatial operator. The valid

output image from the filter is reduced in size, relative to the neighborhood size. In

the case of the 3 by 3 spatial filter the output image is reduced in size by 2 pixels in

both horizontal and vertical dimensions each time the filter is applied.

Neighborhood function applied to all pixels in parallel

Figure 4: Application of Spatial Filters

2.1.1.1 Linear Spatial Filters

Linear spatial filters apply a multiplicative weight to each pixel in the neighborhood.

The weights are defined by a matrix, which is illustrated in Figure 5. In the spatial

domain, linear spatial filters represent a convolution of the image with this weight

matrix. This is defined in equation 1, where I'(i,j) is the output at pixel (i,j), W(k,l) is

the Wk,l
th weight in Figure 5, and I(i-k, j-l) is the input image at pixel (i-k,j-l). By

selecting the appropriate matrix weights, linear spatial filters can implement low-pass,

high-pass and band-pass frequency domain filters.

W1,1 W1,3W1,2

W2,1 W2,2 W2,3

W3,1 W3,2 W3,3

Figure 5: Linear Filter Weight Kernel

11

(1)

Low-pass filtering is implemented by using positive weights. This is equivalent to a

weighted average of neighborhood pixels and is used widely for image smoothing.

Common weight kernels in smoothing include 'flat' kernels, where all weights are set

to the same value, illustrated in Figure 6. It is also common to use the weights to

approximate a Gaussian function, also illustrated in Figure 6. High pass filters use a

kernel with a positive center weight and negative outer weights. An example is

illustrated on the right of Figure 6. These filters are used to enhance high frequency

components in an image such as edges and fine detail.

1 11

1 1 1

1 1 1

1 14

4 12 4

1 4 1

-1 -1-1

-1 8 -1

-1 -1 -1

Flat Average Sampled Gaussian High-Pass Filter

Figure 6: Example Weight Matrices

Linear spatial filters also include a large number of gradient operators that are useful

in enhancing edges. Weight kernels suggested by Roberts [6] and Sobel [7] are shown

in Figure 7. Two weight matrices are associated with each operator and are used to

estimate gradient in two orthogonal directions. Weight matrices by Sobel estimate

Gradx and Grady, but any two orthogonal directions can be used. The magnitude of the

total gradient is then usually calculated by application of equation 2.

22|| yx GradGradGrad += (2)

Due to the computational complexity of Equation 2, approximations have been

suggested. For example, the absolute value of Gradx and Grady can be calculated and

the results simply summed. Another approach, used by Kirsch in [8], is to apply

multiple spatial filters at various orientations and then use the maximum value of the

responses.

∑ ∑
∈

−−=
),(

'),(),(),(
lk Window

ljkiIlkWjiI

12

-1 10

-2 0 2

-1 0 1

-1 -1-2

0 0 0

1 2 1

Sobel Gradx Sobel Grady

0 1

-1 0

1 0

0 -1

Roberts cross-gradient weights

Figure 7: Gradient Weight Matrices

2.1.1.2 Non-Linear Spatial Filters

Linear filters are ideal for suppressing purely Gaussian noise. When noise is non-

Gaussian, nonlinear filters can be more effective. For example median filters are ideal

for suppressing Laplacian noise [9].

Mathematical Morphology defines a family of non-linear spatial filters that are based

on neighborhood order statistics. Early work, that lay foundations for mathematical

morphology can be found in [10] and Preston in [11]. Preston's work is of particular

note since it describes implementation and use of mathematical morphology for

practical applications prior to the theoretical development of the field. Highly

mathematical works followed [12], and morphology now has a firm foundation in set

theory.

In their simplest form, there are no weights associated with neighborhood samples.

The shape of the neighborhood is known as the structuring element or region of

support, examples of which can be seen in Figure 8, for circular and cross structuring

elements. The structuring element defines the set of pixels from which an order

statistic is derived. The fundamental spatial filters in mathematical morphology are

erosion and dilation [13]. Erosion in simplest terms is a minimum of pixels, and

dilation is the maximum of the pixels in the set defined by the structuring element.

Figure 9 illustrates the result of applying these two filters, to binary images. Note, in

the binary case a minimum corresponds to a logical AND of neighborhood pixels. For

dilation, the maximum corresponds to a logical OR of neighborhood samples. Due to

the close relationship between morphology, and logical operations, extremely

efficient hardware implementations are possible.

13

Circle Cross

Figure 8: Example of structuring elements in a 5 by 5 Morphological Filter

Result of Erosion Result of DilationOriginal Image

Structuring
element

Figure 9: Example of binary Erosion and Dilation.

Erosion and dilation are used widely for low-level image enhancement and

smoothing. Particularly useful filters in this regard are summarized in Table 1, which

apply erosion and dilation successively in a particular order. Usually the shape of the

structuring element is constant between successive erosions and dilations.

Morphological Filter Notation and Defintion

Erosion F = Img Θ St

Dilation F = Img ⊕ St

Opening F = Img ◦ St = (Img Θ St) ⊕ St

Closing F = Img • St = (Img ⊕ St) Θ St

Open-Close F = (Img ◦ St) • St

Close-Open F = (Img • St) ◦ St

Table 1: Summary of Morphological Smoothing Filters [13]

Filters based on the median are also related to the field of mathematical morphology.

In this case the order statistic that is used is the median. The relationship between

median filters and mathematical morphology is discussed in [14] and is most easily

seen in application to binary images. Consider the 1 dimensional image of Figure 10,

where a spatial median is applied with a neighborhood of width 3. In this example the

14

median is implemented with a logical OR (+) of 3 AND (implied) expressions. For

gray-value image processing this is equivalent to a maximum of 3 minimums. Each of

the 3 minimums is known as a minterm.

x1 x2 x3
Structuring element
applied at each pixel

x1x2 + x2x3 + x1x3

Figure 10: Application of spatial median

Median filtering has been used extensively for image smoothing, particularly when

noise is non-Gaussian. The logical expression in Figure 10 is known as a positive

Boolean function or PBF. This subset of Boolean logic includes all functions, where

negation of input variables is not allowed. The larger set of filters, defined by the

family of PBFs, has also received considerable attention for noise removal in both

signal and image processing and include weighted median filters [15], weighted order

statistic filters [16], and stack filters [9], [17].

A natural approach to deal with the combination of Gaussian and Non-Gaussian noise

found in most practical problems, is to define a hybrid system that incorporates both

linear are non-linear filtering behavior. Examples of this approach are L-filters [18]

where multiple order-statistic filters are combined with a linear combination. In

another approach [19], the outputs from a bank of linear phase FIR filters are

combined with a median or order statistic filter. A comprehensive account of

nonlinear filters, particularly with respect to hybrid approaches can be found in [20]

15

2.1.1.3 Preprocessing in Multi-Spectral Data Sets

Preprocessing in multi-spectral data sets includes a large body of work that is outside

the scope of this thesis. Algorithms are often designed on a sensor by sensor basis and

include correction of systematic defects and undesirable sensor characteristics, as well

as calibration of sensor and atmospheric models [21]. Such processing is often

performed as the data is collected, and is essential to subsequent data analysis. This

thesis is concerned with the latter stages of multi-spectral data processing. One type of

preprocessing that is worth note is data reduction techniques. Multi and Hyper

spectral sensors produce data cubes with large spectral dimensions. Sometimes it is

inefficient to apply algorithms directly to these large dimensional data sets, and

therefore transformations such as Principle Component Analysis [21] and the

Minimum Noise Fraction [22] are applied. These transformations reduce the

dimension of the data by minimizing the correlation, and therefore redundancy,

between spectral channels.

2.1.2 Feature Extraction

Feature extraction attempts to find measures that will separate points of interest from

the background. This stage of the pipeline can be considered a transformation from

the image space, where each pixel usually represents intensity, to a feature space

where pixels represent more abstract quantities. In simplest terms, these quantities

often represent things such as smoothness or roughness, but can vary greatly

depending on the particular feature of interest. While the usefulness of a particular

measure depends on the problem, there are general characteristics that are often

desirable. These include:

• Rotationally invariant: It is often desirable that AFE algorithms perform

equally well, regardless of the orientation of the image. This implies measures

derived in feature extraction should be rotationally invariant.

• Insensitive to changes in illumination: Ideally, a feature of interest should be

discernable in many different lighting conditions. Usually illumination will

16

affect the magnitude of all pixels in the same way. Algorithms that depend on

particular pixel magnitudes must be carefully considered.

• Scale invariant: Ideally, a good feature extraction stage will perform equally

well regardless of the scale of the input image.

Texture classification and characterization is an important part of many image-

processing applications and has been studied for a number of years. One of the

earliest applications was terrain classification in remotely sensed images, which is of

particular relevance to this thesis. In terms of feature extraction, texture is difficult to

quantify. Texture has been characterized statistically, structurally and spectrally.

Spectral methods are based in the frequency domain and are not considered. An

excellent review of early statistical and structural techniques is presented in [23].

Haralick in [23] suggests texture measures based on the spatial gray-tone dependence

matrix. This matrix consists of relative frequencies P(i, j), where i and j are two

particular gray values that occur a distance d, at direction θ from one another

throughout the image. The dependence matrix is formed through inspecting the

image. This must be performed over a sufficiently large area to make the frequency

estimates meaningful. Also for this reason, image gray values are usually quantized,

typically 8 or 16 levels. Typically 2 to 10 different values for distance and 4 to 16

directions are used. For each distance and angle, Haralick defines a set of 32 statistical

features, which can be calculated from the dependence matrix. In [24] Haralick used

these measures for an AFE application in satellite images. A problem with the

dependence matrix approach is computation time. Multiple matrices must be formed

for various distances and angles before measures can be derived. This can be

expensive to implement in hardware.

2.1.2.1 Linear Spatial Filters

The spatial filters described in Section 2.1.1 have also been used extensively for

feature extraction. Edges play an important role in discriminating texture and

therefore the gradient operators of the previous section are often used. Laws in [25]

suggested several 3 by 3 and 5 by 5 weight matrices specifically for texture. Some of

17

these weight matrices, known as “texture energy measures” are illustrated in Figure

11.

The Laws texture measures implement band-pass filters in the frequency domain. It

can be seen in Figure 11, that some of the masks are similar to smoothing and edge

detector masks encountered earlier. Another important point to note is that masks can

be asymmetric. This increases the operators' ability to discriminate textures, but

multiple filters are required to make the discrimination rotationally invariant. In

practice a bank of filters, with multiple rotated versions of the mask are applied. It

should also be noted that many Laws masks have zero sum. Laws suggested the sum

of squares, or sum of absolute values were therefore the most useful measures.

1 2 1 -1 -2 -1 -1 0 1

2 4 2 2 4 2 -2 0 2

1 2 1 -1 -2 -1 -1 0 1

1 -2 1 -1 2 -1 -1 -2 -1

-2 4 -2 -2 4 -2 0 0 0

1 -2 1 -1 2 -1 1 2 1

1 0 -1 1 0 -1 1 -2 1

0 0 0 -2 0 2 0 0 0

-1 0 1 1 0 -1 -1 2 -1

Figure 11: Examples of Laws 3 by 3 Texture Measures

Interesting extension to Laws work is described in [26]. This work asked if it the

specific weights used by Law were important or simply the general structure of the

spatial filter. They proposed several modifications and concluded the latter: that Laws

spatial filters can be considered a combination of concentric spot masks and center

weighted edge detectors.

A large body of more recent work in statistical texture characterization has focused on

Gabor filters [27]. Gabor filters are Gaussian shaped band-pass filters, centered at a

particular frequency. Similar to Laws texture masks, the Gabor filter is often

18

asymmetric. Therefore, a bank of Gabor filters are usually implemented, each tuned to

specific frequencies and orientations.

Many papers, comparing texture measures have been published [28], [29], [30] and

[31]. Results seem problem dependent and no single technique consistently

outperforms others.

2.1.2.2 Non-linear Spatial Filters

Mathematical morphology can be considered a structural or geometric approach to

feature extraction and texture segmentation. Traditionally structural approaches

attempt to characterize texture through a decomposition of the image into a number of

textural primitives. Once these primitives have been identified, statistical measures

can be derived or syntactic rules found for their placement [32]. Mathematical

morphology can be used to characterize shape and size of textural primitives through

selection of appropriate structuring elements and therefore can be considered a

structural approach.

The morphological equivalent of gradient operators discussed in Section 2.1.1 is the

morphological range defined in equation 3. Img is the original image, St refers to a

particular structuring element and ⊕ and Θ refer to morphological dilation and

erosion respectively.

Range = (Img ⊕ St) – (Img Θ St) (3)

Morphological filters are particularly effective for feature extraction when the feature

of interest has unique size or shape compared to the rest of the image. For example, if

the features of interest in a remotely sensed image are the roads, they could be

characterized by a linear structuring element. In two-dimensional images, a linear

structuring element is not rotationally invariant. Therefore, multiple rotations of the

structuring element are usually applied. This is similar to the filter bank approach

described previously for linear filters. In the morphological case, the maximum or the

minimum response from the multiple filter rotations is used. The maximum is used if

the filter is dilation, or opening. The minimum is used if the filter bank implements

19

erosion or closing. The multiple rotations in a filter bank for a linear structuring

element are illustrated in Figure 12.

Figure 12: Using multiple rotations of asymmetric structuring elements

When the feature of interest has unique size relative to the rest of the image,

morphological filters can be tuned to extract the feature of interest. For example in

closing, dark objects that fit within the tuned structuring element will be removed

from the image. Opening will have the same effect for bright objects in the image.

Often the feature of interest happens to be information that is removed from the

image. This information is known as the residule. Image subtraction is then used for

recovering the residule. A simple example of this image subtraction is seen in the top-

hot transform. Equation 4 describes this operator where ◦ corresponds to

morphological opening and St is a particular structuring element.

Top-hat = Img – (Img ◦ St) (4)

The idea of using the shape and size of the structuring element to sieve an image of

particular information is extended in the field of granulometries, first proposed in

[33]. The term Pattern Spectrum is also used to describe a particular granulometric

approach. A comprehensive discussion of Pattern Spectrum is given by Maragos in

[34]. Explanation of granulometries to come is based on works by Dougherty in [35]

and [36].

The granulometric approach, involves opening or closing an image with successively

larger structuring elements. The notation kSt, is often used to denote a particular size

k of a structuring element via equation 5.

20

kSt = St ⊕ St ⊕ ⊕ St (5)

An important property of granulometries comes from the fact that for k2 > k1 > 0,

opening by k2: Img ◦ k2St will be a subset of the opened image by k1: Img ◦ k1St.

This can be most easily understood in terms of the sieving analogy. More of the image

will be smoothed, or removed by the k2St structuring element than with k1St.

Ω(k) defines the total area of the image that is left after the Img ◦ kSt opening is

applied. Ω(0) defines the area of the original area, and can be calculated by summing

all pixel values. The property described above means that Ω(k) is a decreasing

function of k an that Ω(k) = 0 for sufficiently large k. Ω(k) is known as the size

distribution, and a normalized size distribution is defined by Equation 6.

)0(

)(
1)(

Ω
Ω−=Φ k

k (6)

Φ(k) is an increasing function from 0 to 1 and can be interpreted as a probability

distribution function. The derivative of this function represents a probability density

function and is calculated by Equation 7. This function is known as the pattern

spectrum.

dΦ(k) = Φ(k+1) - Φ(k) (7)

Pattern spectrums have been used extensively for texture and object characterization

in image data sets. Classification has been applied directly to pixel pattern spectrums

in [37]. It is also common to use calculate statistical moments of the pattern spectrum

prior to classification. Work by Aubert et al. [38] is of particular interest. The

computational cost of computing granulometries via opening and closing leads the

authors to suggest pseudo-granulometry based on erosion and dilation respectively.

2.1.2.3 Feature Extraction in Multi-Spectral Data Sets

There are several algorithms that are used in multi-spectral feature extraction worth

particular note. Band ratios are an arithmetic division of two spectral bands. Many

k times

21

extensions to this ratio such as Normalized Differential Vegetation Index (NDVI)

have been described [21]. The NDVI is shown Equation 8, S1(i,j) and S2(i,j) refer to

two different spectral channels that are taken as input to produce SNDVI(i,j). This can

be seen as a type of multi-spectral point operator.

),(),(
),(),(),(

21

21'

jiSjiS
jiSjiSjiS NDVI +

−= (8)

Another important multi-spectral technique is a weighted sum of spectral channels

described by Equation 9 where N is the number of spectral channels being considered.

In this case the weight vector, Wn is often referred to as a spectral signature and the

dot product of spectral channels and the weight vector can be considered a spectral

distance to the particular signature. This type of processing is considered further in the

next Section on Classification.

∑
=

∗=
N

n
nn jiSWjiS

1

'),(),((9)

2.1.3 Classification

The 3rd stage in the processing pipeline of Figure 2 is classification. The measures

derived in feature extraction are used to decide whether particular pixels belong to a

target class or are of interest. This stage is most easily understood in feature space.

Usually a number of measures, N are derived in feature extraction. Feature space is

then the N-dimensional histogram of these measures. This is illustrated in Figure 13

for N=2.

Figure 13: Feature Space

22

Classification is concerned with dividing feature space, by drawing boundaries known

as decision surfaces, into a number of classes. In this thesis, only 2-class problems are

considered. This means a pixel belongs to one of two classes: one class usually

corresponds to a feature of interest and the other class, non-feature. Figure 13

illustrates a common decision surface used for two-class problems. A line in 2

dimensions, or hyper-plane in higher dimensions, is used to divide feature space into

the two areas that correspond to the two classes.

Classification can be considered supervised or unsupervised. This thesis deals

exclusively with supervised learning. This means training data is supplied so that

decision surfaces can be optimized for a particular problem. Training data consists of

a collection of pixels that have been pre-labeled as belonging to a particular class.

This is referred to as a target classification and an example can be seen on the right of

Figure 13. White corresponds to feature of interest and gray corresponds to non-

feature. Black is unlabelled and can be considered don't care (or more usually don't

know). The supervised learning approach uses the target classification to calculate a

classification error. The decision surface can then be optimized to minimize this error.

2.1.3.1 Statistical Classification

Pattern classification has firm foundation in statistics and probability. Only a brief

introduction to this large field of research is possible. Comprehensive introductions to

these topics are available in many standard texts [39], [40], and [41].

Using the statistical approach, the probability of misclassification is minimized by

estimating the Bayes posterior probabilities P(Ck | X’). This is the probability of a

pattern belonging to class Ck when X’ is observed. The pattern is then assigned to the

class with the largest posterior probability. For the two class problem, if P(C0 | X’) >

P(C1 | X’) then X’ is assigned to class C0. A larger number of techniques have been

proposed which differ in the assumptions made in modeling the probability density

functions of the two classes. Usually Gaussian distributions are assumed, which are

characterized by the distribution mean and covariance matrix.

23

In the simplest case the covariance matrices are assumed equal for all classes.

Additionally, if all features (dimensions in feature space) are assumed independent,

the classifier is known as the Minimum Distance Classifier. In this classifier, posterior

probabilities can be estimated by a Euclidean distance between observed patterns X’,

and the class mean. During training, the class mean (often referred to as a prototype

vector) is estimated from the training data. In application, a pattern is assigned to the

closest class based on distance to the prototype vectors. For the two-class problem,

the decision surface is a hyper-plane perpendicular to a line segment joining the two

class prototypes. Spectral Angle Mapper (SAM) is a variant of Minimum Distance

that is used in experiments latter in the thesis. In this case, the magnitude of pattern

vectors is normalized prior to classification. SAM is used in remote sensing

communities and is often applied directly to the spectral dimension of a multi-spectral

image [42]. Normalization is motivated by the need to produce an illumination

insensitive classification. By normalizing the magnitude of pattern vectors, variations

in the relative quantities of spectral channels is more easily discerned.

When class distributions assumptions are relaxed, more complex decision surfaces

can be made. In the Maximum Likelihood Classifier, no assumptions are made

concerning the class covariance matrices. For the two-class problem, this leads to

decision surfaces based on hyperquadrics. The Maximum Likelihood is used widely

in remote sensing data sets [43] and latter in the thesis.

2.1.3.2 Neural Networks

Neural networks have been used extensively for pattern recognition problems and are

particularly relevant to architectures considered in this thesis. The Perceptron is a

linear thresholding element fundamental to the field of neural networks.

Figure 14: The Perceptron

*W1

*W2

*W3

Input1

Input2

Input3

∑

24

The Perceptron was suggested by Rosenblatt in [44] and is depicted in Figure 14. It

implements a hyper-plane decision surface, similar to that produced by the Minimum

Distance Classifier. More complex decision surfaces can be formed by combining

linear thresholding elements in a multiple layer, feed-forward network. A key work to

the development of multiple layer neural networks was a supervised learning

algorithm [45]. This work introduced a gradient descent method known as Back

Propagation. Necessary to this training algorithm is the use of differentiable sigmoid

activation functions. The use of sigmoid activation functions also means the network

output is an estimate of the posterior class probabilities [41]. Multiple layer neural

networks are able to produce arbitrary decision surfaces examples of which can be

seen in Figure 15. This illustration is based on work by Lippmann [46], which

provides an excellent introduction to the early work on neural networks.

1 Layer Networks 3 Layer Networks2 Layer Networks

Figure 15: Multiple Layer Network Decision Surfaces

When a linear perceptron is applied to a spatial neighborhood (without thresholding),

the function it implements is a convolution, or linear spatial filter described in Section

2.1.1. This type of network is known as a convolutional neural network. One of the

first implementations of convolutional neural networks was called the neocognitron

and was reported in [47]. Subsequently, they have been applied to a wide range of

problems in image and signal processing [48].

25

2.1.4 Discussion

Section 2.1 has provided a brief overview of constituent parts of a typical AFE

algorithm, as well as the more specific techniques referenced in the thesis. While the

decomposition of AFE into preprocessing, feature extraction and classification is seen

widely in the literature, in practice these stages are closely tied.

An important consideration in supervised AFE is generalization. Obtaining an

accurate classification on the training data is important, but it is the application of

optimized algorithms to out-of-training data that is the primary motivation. This is a

much more difficult problem to quantify. In more general terms, the interplay of

pipeline stages can potentially affect the generalization ability of a particular AFE

algorithm. For example, classification techniques such as the maximum likelihood are

capable of forming complex decision boundaries and therefore could be applied

directly to the raw data and achieve low classification error on the training data. In

practice, this often leads to poor performance on out-of-sample data and therefore

preprocessing and feature extraction are usually preferred. A good set of features will

make classification easier and hopefully lead to good generalization.

Deciding what features will lead to robust AFE is known as Feature Selection and is

discussed further in the Evolutionary Algorithms section. One approach to this

problem of particular interest is the co-optimization of feature extraction and

classification components. This means feature selection can be directed towards easily

classifiable subsets, while simultaneously leading to simpler classifiers. An example

of this approach was presented in [49], where a Morphological shared-weight neural

network, capable of both feature extraction and classification was used for automatic

target recognition problems.

A problem with the co-optimization approach is that learning algorithms become

more complex. There are a large number of potentially useful transformations that

could be used for feature extraction and optimization soon becomes intractable. A

potential solution to this problem lies in Evolutionary Algorithms, which are the topic

of the next section.

26

2.2 Optimization with Evolutionary Algorithms

Evolutionary Algorithms (EA), define a family of stochastic search and optimization

techniques that include genetic algorithms, genetic programming, evolutionary

programming and evolutionary strategies [50]. Evolutionary algorithms are one of the

most flexible optimization techniques in use today. For this reason EA have been

applied to a variety of research, industrial and commercial problem solving activities

[51].

It is often convenient to visualize a fitness landscape depicted in Figure 16. This

landscape covers all possible configurations of a particular model with two degrees of

freedom. Fitness is an abstract measure of how well a configuration solves a particular

problem. It can be seen in Figure 16, that this is a hard optimization problem with

many local optima, and possibly several near-global optima. EAs are a

computationally intensive search technique that can find global optima in these types

of problems. They do this by maintaining a number of search paths in parallel. This is

known as a population. The population provides a wide sampling of the fitness

landscape, which is important in avoiding local optima. The population of search

paths, or chromosomes, is then manipulated from one generation to the next in an

effort to find the global optima.

Fitness Score

Degree of Freedom

Degree of Freedom

Figure 16: A Fitness Landscape

27

Initialize Population

Evaluate Population

Select Candidates

Alter Candidates

Form New Population

Stopping Ctriteria Met?

Yes

No

Representation

Reproduction

Selection

Genetic Operators
Mutation
Crossover

Figure 17: The general Evolutionary Algorithm

A general procedure for evolutionary algorithms can be seen in Figure 17. The initial

sampling of the search space that generates the initial population is usually random.

The chromosomes, or candidate solutions within the population are then manipulated

from one generation to the next in reproduction. Reproduction is usually based on

fitness, so that chromosomes that solve the problem well have more chance of being

present in the next generation. After, a finite number of generations the population

that results will hopefully contain highly fit chromosomes and therefore good

solutions to the problem. There are a great many ways EA can be applied to particular

problems. The most common variation in EAs occurs in:

• Representation: How candidate solutions within a population are represented. The

representation effectively defines the degrees of freedom or search space for a

particular problem. It is therefore often problem specific.

• Selection: How the new population is selected from the old population.

• Genetic Operators: How the population is altered from one generation to the next.

Some of the more common variants will now be discussed. Readers familiar with EA

can move to Section 2.2.4 where the application of EA to AFE problems is described.

28

2.2.1 Representation

One of the first EA strategies to be introduced was Genetic Algorithms by Holland

[52]. In this work bit strings are used to represent individuals within the population.

The advantage of the bit-string representation is that they are universal. Bit strings are

a 'general purpose' representation that can be applied to a variety of problems. They

also allow more theoretical investigations of Evolutionary Algorithms to be made.

This is discussed more in terms of genetic operators. The problem with bit string

chromosomes is that they are not always the most natural or simplest way to represent

a problem. An alternative bit string representation, termed Messy GAs was proposed

in [53]. It represents chromosomes with variable length bit strings. This increased

flexibility is often convenient for many types of problems. For parameter optimization

problems, where precision is often crucial, floating point numbers have been used

successfully. Floating-point representations were first used and developed in the field

of Evolutionary Strategies. A comprehensive account of early work in this type of EA

is given in [54]. In other applications such as combinatorial optimization problems,

integers or natural numbers are often more appropriate.

Genetic Programming is a type of evolutionary algorithm first described by Koza in

[55]. Chromosomes are represented by high level, often problem domain specific,

hierarchical expressions similar to software programs. Koza’s initial structures were

based on Lisp S-expressions, but the principles have now been applied to a variety of

programming languages including C, C++, Pascal, FORTRAN and Small talk. An

example of a Genetic Programming chromosome is shown in Figure 18.

29

*

>

0.6INP

IF

>

0.6 INP

0.9 0.1

Figure 18: A Typical Chromosome in Genetic Programming

Trees are composed of genetic material from:

• A population of terminals (gray): constants and input variables.

• A population of functions: These include arithmetic functions, programming

operations such as IF and FOR constructs, logical and Boolean functions as well

as problem domain specific functions.

A requirement known as closure is often introduced which means that all functions

within a population are able to receive the output of any other function or terminal as

input. An initial population is usually chosen at random and the genetic operators of

reproduction and crossover are applied at each generation. Individuals are variable

length and expand and contract as the evolutionary algorithm progresses.

2.2.2 Genetic Operators

The success of EA in reaching global optima depends largely on how effective

genetic operators are at generating fitter individuals. Due to the problem specific

nature of representation, genetic operators are also often representation dependent and

therefore a large number of strategies have been suggested. In this section, the basic

principles and motivation of the two fundamental EA operators: mutation and

crossover are described.

30

The mutation operator is applied to a single parent chosen from the population and

provides the EA with noise or randomness that is required to explore the search space.

In the bit-string representation, mutation is applied by random bit flips at a particular

probability. In other representations more complex, problem dependent mutation

schemes are used. Methods developed in Evolutionary Strategies usually implement

mutation rates that vary during the course of evolution [54]. This means the search

space can be explored uniformly at first with high probability of mutation and then

locally towards the end of evolution with smaller probabilities.

The second genetic operator is crossover and is usually applied to two parents chosen

from the population. Single point crossover is used to describe the process. Two

parent chromosomes are selected: C1 and C2 in Figure 19. A crossover point is

randomly chosen and the parent sub-strings are then swapped. If an individual

containing sub-string C1S1 and an individual containing sub-string C2S2 are both fit

individuals, then an offspring containing both sub-strings C1S1 and C2S2 may also be a

fit if not fitter individual. The two new chromosomes produced by this sub-string

swap are often called children or offspring.

C1S1

C2S2

C1S2

C2S1

C1S1

C2S1

C2S2

C1S2

Figure 19: The One-Point Crossover Operator

The idea of sub-strings or building blocks is considered further in theoretical

investigations of EA search techniques. The term Schemata refers to a sub-string or

set of sub-strings found in a population of individuals. Interesting insights are gained

by considering evolution of these chromosome sub-strings rather than the

chromosomes themselves:

Schema Theorem or Building Block Hypothesis: Short, low-order, above average

schemata receive exponentially increasing trials in subsequent generations of a

genetic algorithm [52].

31

Another type of crossover that is useful in visualizing the building block hypothesis is

seen in Genetic Programming [55]. In this case the representation is the program like

tree that was illustrated in Figure 18. Two parents are chosen, and a node randomly

selected from each. The sub-tree formed by all nodes and connectivity below the

selected nodes are then swapped between individuals. An extension to this approach

was introduced [56] called automatically defined functions (ADF). This approach

attempts to dynamically protect sub-trees that are useful building blocks for solving

the problem. A particular sub-tree that is deemed to be useful is replaced by a single

node in the chromosome and is therefore protected from further modification by

crossover. This is useful for optimizing complex systems and can take advantage of

regularities, similarities and patterns within a problem domain.

2.2.3 Selection

Having discussed the Genetic Operators, the question remains, how are the parent

chromosomes selected from the population. The most straightforward approaches are

fitness-proportionate techniques where the probability of an individual being selected

is proportional to its fitness. The roulette wheel technique was the first method

proposed to implement this [57]. Many other selection techniques have now been

suggested. These are partly inspired by two problems encountered using the roulette

wheel technique:

• When the difference in fitness between individuals is small, there is little

selection pressure for fit individuals since they are hard to differentiate.

• When one individual has an unusually high fitness compared to the rest of the

population (often called a super individual), the individual may dominate the

population leading to premature convergence.

In this thesis, a ranking technique known as Elitism is used. This technique uses the

relative orderings of individual fitness values rather than the fitness values

themselves. Rank-based selection methods can therefore differentiate between close

scoring individuals. Other selection methods include tournament selection, steady

32

state GA and island models. Good introductions to the large number of Selection

strategies can be found in [57], [50], [58].

The Elitist Selection scheme used in this thesis implements a predetermined schedule

for reproduction. This approach means the designer must supply more parameters, but

also means the designer has greater control. An example of a schedule is shown in

Figure 20. A fixed number, or certain percentage, of fit individuals are called the elite

and are carried through into the next generation without alteration. In Figure 20, the

top 10 individuals from a population of 100 copied directly to the new population.

EA Parameter Number

Population Size 100

Parents 80

Number of Generations 50

Reproduction

Elite 10

Mutated Elite 20

Crossover (parents chosen from top 80%) 30

Mutation (parents chosen from top 80%) 30

Random Generation 10

Figure 20: Selection Schedule for Rank Selection

Another proportion of the population is then generated by mutation of a chromosome

randomly chosen from the elite. This is to encourage a hill-climbing type search in

good chromosomes. In Figure 20, there are 20 individuals generated by mutating the

top 10. Another, generally larger proportion of the population is generated by

crossover and mutation of randomly selected parents. This selection is not usually

based on fitness, but again a percentage of the population. For example in Figure 20

the value of Parents dictates selection from the fittest 80 chromosomes.

It is also common for a schedule to include offspring through mutation alone. In

Figure 20, another 30 individuals are generated by mutation of parents randomly

selected from the fittest 80 individuals. The final 10 individuals that form the new

33

population of 100 are generated through random re-sampling of the search space.

While it is hoped the EA can outperform random search, it is sometimes helpful to

include the potential of new building blocks at each generation.

An important part of selection is to maintain diversity in the population so that the EA

does not prematurely converge to a local minimum. For this reason, the idea of

specialization, or niches, appears often in EA literature. Methods of encouraging

specialization in a single population have been proposed [59], [60]. Another approach

is to use multiple populations. The island model of EA [61] is a multiple population

technique that has received considerable attention. A number of populations are

maintained independently, although there is often some degree of inter-island

recombination. With the island approach, populations are competing to find good

solutions, but since a number of populations are kept semi-isolated premature

convergence can be reduced.

2.2.4 Evolutionary Algorithms and AFE

EA have been applied to almost every part of the AFE pipeline. They are particularly

useful in optimizing non-linear filters, where it has been traditionally difficult to

develop learning algorithms. Examples of this type of work can be found in [62] for

morphological filters and [63] for stack filters. Application of EA to feature extraction

include optimization of Gabor filters [64], cross-correlation statistics in stereo

matching algorithms [65] and edge detection in [66].

Work in [67] describes the evolution of logic trees to perform edge detection in

cellular arrays. This is most similar to work that will be described in Chapter 4. An

interesting work in [68] applies Genetic Programming to image processing operator

design. This work uses a similar approach to the GENIE system to be discussed. EA

building blocks are combination of linear and nonlinear filters including Gabor filters,

Gaussian and derivatives of Gaussian spatial filters. Non-linear filters include square

root, square point operators and the median spatial filter. Discussion of the GENIE

system to come will provide readers with a clearer idea of how this kind of approach

can be implemented.

34

2.2.4.1 Evolutionary Neural Networks

Later in the thesis, EA are used to optimize network architectures for AFE problems.

EA have been applied extensively to neural network design and optimization. The

similarity in architectures between neural networks and the networks developed in

this thesis warrants a brief account of this work. EA have been applied to neural

networks in a number of different ways:

• Linear chromosomes to represent network weights of a fixed topology [69],

[70].

• The chromosome encodes structure as well as weights. The topology can be

optimized for a particular problem [71].

• Developmental encoding: The chromosome is a linear program, whose

instructions dictate placement and connectivity of network nodes [72].

Specialization is a necessity when trying to optimize large, complex structures such as

neural networks, and has slightly different meaning to previous discussions regarding

diversity. The idea is to decompose, or modularize the optimization problem and find

a collection of sub-components that work well together. Competition within the

population, the main evolutionary pressure in traditional EA, is therefore not the only

factor. Since sub-components in a network are dependent, and only contribute

partially to a complete solution, collaboration is also required.

Incremental Learning is one method of encouraging collaboration. In the incremental

optimization of neural networks described in [73], and [74], the optimization begins

with one network node. Once this node has reached a specified level of fitness, or

there is no improvement in fitness after a specified number of generations, another

node is introduced. In some cases, the first node is fixed and the EA is only applied to

the second node. In other cases, the chromosome is extended to include both nodes

are then evolution continues as normal. This process continues until the network has

reached a desired fitness or maximum number of nodes.

Several other mechanisms to encourage collaboration in neural network nodes have

been suggested. In [75] multiple populations are used, each one associated with a

35

neuron in a pre-defined network configuration. Neurons are randomly selected from

each population, combined in the network and fitness evaluated. The fitness of the

network directs evolution within each population, as well as a second abstract

population of blueprints. Blueprints are essentially records of good neuron

combinations. This second population means neurons that participated in high fitness

networks, but then were also involved in low fitness networks, are not immediately

lost from the gene pool.

A good review of evolutionary neural networks can be found in [76]. Further

discussion of these techniques, particularly Incremental Learning is made in Chapter

7 with respect to the POOKA network architecture.

2.2.4.2 EA applied to Multi-Spectral AFE and the GENIE system

Relevant to this thesis are works that apply EA to scene classification in remotely

sensed data. Daida in [77], uses a genetic programming approach for the classification

aspect of the problem. He used a pre-defined set of features based on Haralick's

texture measures described in Section 2.1.2. EA was used to optimize a decision tree,

based on the textures, to label the feature of interest. Another interesting work that

applies EA to automatic scene labeling for multi-spectral images can be found in [78].

Concurrent to this thesis, a software system known as GENIE was developed at Los

Alamos National Laboratory [79]. GENE uses a combination of Genetic Algorithm

and Fisher Linear Discriminant [41] (hyper-plane classifier with a particular criteria)

to classify each pixel in an image as either feature (TRUE) or non-feature (FALSE).

Figure 21: Overview of GENIE architecture

36

Figure 21 illustrates the high-level architecture. The GA is used optimize image

processing algorithms that perform the feature extraction stage. The chromosome

therefore specifies a particular transformation from raw Data Planes to a set of

Feature Planes. The linear discriminant is then applied to the Feature Planes, which

produces a single Output Plane. The fitness of the image processing algorithms is

found by calculating a distance between the Output Plane to the target classification

(Truth Plane in Figure 21).

Figure 22 illustrates the GENIE chromosome (top) as well as two equivalent

representations, which are useful in understanding how chromosomes behave.

Figure 22: Chromosome representation in the GENIE system [80]

GENIE encodes a linear string chromosome. Each chromosome is composed of a

number of genes illustrated at the top of Figure 22. Each gene specifies a particular

image processing operation, as well as its connectivity to other genes. Each image

processing operator has one or more inputs, performs some predefined computation,

and one or more outputs. Table 2 summarizes a subset of the image processing

operators that are available to the GENIE system. The lines of code on the left of

Figure 22, shows how the chromosome is translated for execution. Scratch planes can

be considered temporary images. Genes write their output to scratch planes, which are

then used as input by genes latter in the chromosome. The interaction of genes and

scratch planes can be visualized most easily as a graph, illustrated on the right of

Figure 22. The graph has multiple inputs, taken from the Data Planes and multiple

outputs (Scratch1 and Scratch2), which are used as Feature Planes, and input to the

linear discriminate.

37

Gene Code Operator Description Gene Code Operator Description

ADDP Add two images SOBEL Sobel Gradient

SUBP Subtract two images LAW Neighborhood texture

measure

ADDS Add a scalar to an image SD Neighborhood standard

deviation

SUBS Subtract scalar from image EROD Morphological Erosion

MULTP Multiply two images DIL Morphological Dilate

DIVP Divide two images OPEN Morphological Open

MULTS Multiply image by scalar CLOSE Morphological Close

DIVS Divide image by scalar OPCL Morphological open-close

SQRT Square-root of image CLOP Morphological close-open

LINCOMB Linear combination of

images

Table 2: Sample of GENIEs image processing operator pool

The GENIE system uses a generational GA with elitism that was discussed

previously. Single-point crossover is applied to the string representation of Figure 22,

at gene boundaries. Three types of mutation are implemented:

1. Gene paramaters: Many image processing operators have paramaters such as

scalar constants and neighborhood shape.

2. Gene connectivity: The input and output planes of the image processing

operator can change.

3. Gene function: The image processing operator itself can change

2.2.5 Discussion

The Genie system has been applied successfully to a wide variety of problems. This is

partly due to the co-optimization of feature extraction and classification. Features are

found whose output discriminates the true and false classes according to the Fisher

criteria. At the same time, the Fisher criteria is more easily met and classification

becomes simpler. Another strength of the GENIE system is the combination of well-

developed linear and non-linear transformations.

38

The combination of Genetic Algorithm and Fisher Linear Disciminant is an excellent

example of how hybrid optimization techniques can be implemented. It is possible

that a Genetic Algorithm will eventually find the Global Optima in any optimization

problem. However, the efficiency of search can be substantially improved by

incorporating analytical optimization techniques. The EA provides a global sampling

of the search space, and then the Fisher Discriminant can quickly find the local

optima directly. This increased efficiency is due to assumptions made in the Fisher

criteria.

The combination of EA and conventional optimization techniques such as Back

Propagation is also seen widely in neural networks [81]. It is also common for EA to

be combined with hill-climbing algorithms [82]. These hybrid systems can benefit

from both techniques to make search more efficient. The EA provides a robust global

search mechanism and hill-climbing or gradient descent methods provide an efficient

local search.

Evolutionary Algorithms have been presented as a simple but powerful approach to

optimization. If a fitness measure can be calculated for a particular problem, then an

EA can be used. The fundamental problem when using EA is computation time. Many

candidate solutions must be evaluated, and each evaluation may be complex. This can

lead to training times an order of magnitude greater than analytical optimization

techniques, and why hybrid optimization techniques are attractive for software

implementations. Another way of addressing the large EA computation times, and the

approach used in this thesis, is through hardware acceleration with Custom

Computers.

39

2.3 Implementation with Custom Computers

Custom Computers, used in this thesis, are plug-in boards for PC's and workstations.

They are intended as application accelerators to which the CPU can pass

computationally intensive tasks. Custom Computers usually include a number of

reconfigurable logic devices, local memory and a bus interface to a host processor.

Reconfigurable logic in simplest terms is an array of uncommitted gates, or logic

functions that can be configured to meet application specific processing requirements.

There are many types of reconfigurable logic devices and they are used extensively

for rapid prototyping and logic replacement. In this thesis we restrict our attention to

FPGAs and particularly SRAM based FPGAs. In Custom Computers the FPGA and

host processor are usually tightly coupled. By combining a microprocessor host with

FPGAs, an algorithm will benefit from the flexibility of software, as well the

performance of specialized hardware.

How well an algorithm can be implemented in CC depends on how well matched the

problem architecture is to FPGA devices and the custom computer architecture:

• The FPGA Architecture: An understanding of the FPGA architecture is

required in order to efficiently implement algorithms on FPGAs. Different

FPGAs will be suitable for different problems, depending on the fundamental

building blocks that they provide. This is described for FPGAs used in this

thesis in Section 2.3.1

• The Custom Computer Architecture: The organization of FPGAs, local

memory and associated data paths can dictate major design decisions. How the

host and CC communicate, and getting data to and from the FPGA must be

considered. Further discussion on this topic is presented in Section 2.3.2.

40

2.3.1 The Building Blocks: Field Programmable Gate Arrays

The FPGA provides flexibility in what function or computation gets performed, as

well as how the computational elements are connected. Computation gets performed

in Logic Blocks that are distributed on the chip in a particular way. Connections are

then made through programmable switch boxes in a routing network. Figure 23

illustrates two organizations of the function units and routing channels.

Logic Block

Routing Channels

Figure 23: Two example Architectures. Left: Array Right: Channeled

The devices used in this thesis are illustrated on the left and are typical of FPGAs

provided by Xilinx [83]. There is a two dimensional array of logic blocks separated

by routing channels in both the horizontal and vertical directions. Additional routing

and functionality is usually organized hierarchically. Figure 23 also illustrates another

organization known as a Channeled architecture. This is an extension of the ASIC

standard cell methodology and is typical of FPGAs produced by Altera [84]. In this

case, functionality is extended in rows. More predictable routing times are possible

with this approach and group of cells are easily placed for multi-bit arithmetic.

An FPGA can be either fine grain or coarse grain. In this thesis, two FPGAs that are

representative of these two architectures are described and used. The XC6216 FPGA

is a fine grain device and its Logic Block is based around a small multiplexer cell.

The Virtex FPGA is a coarse grain architecture and implements much larger, complex

logic blocks. In the coarse grain architecture, there are fewer logic blocks per FPGA

but each block has greater functionality.

41

2.3.1.1 The XC6216 FPGA

The XC6216 FPGA by Xilinx is depicted in Figure 24 and is described in [85]. It has

a regular 64 by 64 two-dimensional array of Logic Blocks. These blocks are very

simple, and contain a logic function of 2 variables, a register or flip-flop and routing

resources. Cells are grouped hierarchically for routing purposes. At the lowest level

cells are interconnected to the nearest neighbors in four directions. These cells are

grouped into four and supplemented with length 4 wires. These 4x4 groups then form

part of larger 16x16 groups, which are further supplemented by length 16 wires and

chip-length interconnects. Higher density devices by Xilinx extend this concept,

adding another level to the hierarchy.

Figure 24: The XC6216 FPGA by Xilinx

The XC6216 is unique to nearly all other FPGAs in how it is programmed. The most

common approach to programming SRAM based FPGAs is to download a bit-stream,

sequentially to the device. The bit-stream encodes the precise functionality of the

Logic Block and defines the Interconnect between blocks. The XC6216 FPGA

implements this differently. The configuration registers used to program the XC6216

are memory mapped to the host processor. This essentially provides the host with

random access to the FPGA configuration. This is known as Rapid Reconfigurability

and is particularly attractive in situations where only a small part or the design needs

to be reconfigured. This is called Partial Reconfiguration and is discussed further in

Chapter 3.

42

Another important aspect of the XC6000 series FPGAs that has not been present in

other devices is protection from internal contention. By using multiplexers on every

input node Xilinx has ensured that no combination of configuration bits can cause

multiple sources to drive internal wires and damage the device. In previous devices it

was the responsibility of the designer and CAD software to ensure that this did not

occur.

Figure 25: XC6216 Logic Block

The Logic Block of the XC6216, is depicted in Figure 25. It has 24 bits of

configuration memory. These configure the cell’s function unit as well as the local

routing resources. The function block is capable of implementing any 2-input logic

function or 3-input multiplexer. It also has a D-type flip-flop. Each cell receives input

from its four closest neighbors and several other more distant cells. For example, in

Figure 25: N, S, E and W represent nearest neighbor communication and N4, S4, E4

and W4 represent interconnection between neighboring 4x4 blocks. Additional

configuration bits define global routing resources and the functionality of I/O blocks

found on the perimeter of the array.

43

Both the fine grain nature of the XC6216 FPGA, and its hierarchical routing suggest

the device is most suitable for logic-based computations. This is described more in

Chapter 4. When more complex processing is required, such as multi-bit arithmetic,

the fine grain architecture can be inefficient. For this reason, many modern FPGAs

such as the Virtex FPGA from Xilinx have moved to coarse grain architectures that

are more suitable to computation at the arithmetic level.

2.3.1.2 The Virtex FPGA

The Virtex FPGA by Xilinx is the other FPGA used in this thesis. It was first released

in 1999. The largest FPGA available in this series is currently the XCV3200E FPGA,

which uses a 0.18 um 6-layer metal process and has approximately 4 Million system

gates. In this thesis the XCV2000E FPGA is used which is approximately 0.6 times

the size. Figure 26 illustrates how the Virtex Logic Blocks (CLBs) are organized. An

additional component, seen in Figure 26 is dedicated on-chip memory, known as

Block Rams (BRAMs). Computation usually requires memory and a key advantage to

FPGA implementations is an ability to design specialized memory interfaces to fast,

high bandwidth memory. The importance of Block RAMS in this thesis becomes

clear in Chapter 6 with the implementation of spatial convolutions.

Figure 26: The Virtex FPGA by Xilinx

44

Figure 27 depicts the Virtex Logic Block. It is made up of two slices. Each slice has

two 4-input Look Up Tables, and 2 registers. In addition, Logic Blocks contain

specialized resources for carry propagation logic seen commonly in multi-bit

arithmetic. Each slice can implement a 2-bit adder and when Logic Blocks are

stacked, flexible bit-width arithmetic with low propagation delays can be

implemented.

Figure 27: Virtex Logic Block

Also provided in the Carry Logic is a dedicated AND gate which can be used to

efficiently implement integer multiplication. The number of Logic Blocks required to

implement array multipliers is effectively halved. The Virtex FPGA architecture

suggests fine grain parallelism using simple processing elements similar to the

XC6216. However, the more complex Logic Block of the Virtex means processing

elements can include multi-bit arithmetic, small multipliers and on-chip registers. This

is described more in Chapter 5.

The Virtex FPGA also supports partial reconfiguration [86]. However, it is more

limited than in the XC6216 FPGA and the device is not considered Rapidly

Reconfigurable. Each column of Logic Blocks in the Virtex FPGA can be

independently addressed in frames. There are 48 frames associated with each column

and 80 rows of Logic Blocks per column in the XCV2000E FPGA. To reconfigure a

particular Logic Block requires multiple frames since the information is stored

column wise. Another limitation of rapid reconfiguration in Virtex FPGAs is the fact

that Xilinx has commercial interest to not publish the configuration bit-stream format

45

publicly. Without this information, it is impossible to dynamically reconfigure the

device at the bit-stream level. Xilinx introduced a Java based tool known as JBITS as

an alternative. This program mediates bit-stream modifications, allowing the user to

specify logic block and routing configurations, which are then mapped to the

proprietary bit-stream.

Use of the Virtex partial reconfiguration for implementing EA experiments is yet to

be seen. This is partly due to the frame organization, but mostly due to lack of tools.

Also, many Custom Computers that use Virtex FPGAs do not provide support for this

feature at the board level. This is the case for the Firebird CC used in this thesis and

therefore the Virtex partial reconfiguration capabilities were not explored.

2.3.1.3 Programming FPGAs

While the design cycle for an FPGA can be significantly lower than for an ASIC, it is

still much longer than software design cycles. The design process for a typical FPGA

application is illustrated in Figure 28. The design is first specified using either

graphical schematic entry or Hardware Description Languages (HDLs). HDLs are

comparable to software programming languages, but their functions model hardware

constructs such as gates and flip-flops. There are many varieties of HDLs that have

been developed, usually for specific target architectures. Two of the most commonly

used are Very-high-speed-integrated-circuit Hardware Description Language (VHDL)

[87] and Verilog.

Once specified, the design is then simulated using software tools to verify its

accuracy. Specification and Simulation is usually an iterative process that can take

days or weeks depending on the design complexity. Once a design is verified through

simulation it then must be compiled for a particular FPGA. This process is carried out

in Stages 3 through 6 and is largely automated using software tools. In Synthesis, the

design is converted to an intermediate format, known as a netlist, which is device

independent. Technology Mapping then translates the device independent netlist to a

device specific format.

46

Figure 28: Typical FPGA Design Process

The 5th step in the design process is Place and Route, which is the most time-

consuming of the automated tasks. It involves physically allocating the functional

units on the FPGA and then routing the required interconnections. This process is

similar to that used for ASIC design and is important in terms of efficiency due to the

limited logic and routing resources available in FPGAs. Automated design software

does not always perform well, and it is common for a designer to manually place

some components during this step to help the routing software. The final step in the

design process is to generate the configuration bit stream used to program the FPGA

device. This is a simple translation and usually takes a few seconds. These

configuration bits can then downloaded into the FPGA device in milliseconds.

1:Design Specification
VHDL, Schematic

3:Logic Synthesis
Produce device independent

net list

5:Place and Route
Allocates FPGA resources

Generates Bit-stream

6:Device Configuration
Download Bit-stream

4:Technology Mapping
Device dependent net list

2:Design Simulation
Verification

47

2.3.1.4 Discussion

Many FPGAs manufacturers appear to be moving towards coarser grain, higher

complexity architectures with specialized arithmetic and logical components. The

future of FPGAs may lie in devices that incorporate both microprocessor and FPGAs

on the same chip. Already, both Xilinx and Altera offer soft processor cores that can

be used with their devices. Xilinx has produced an optimized 32-bit processor for

their soon to be released Virtex-II part which is called the MicroBlaze [88]. Xilinx

also announced plans in November 2000 for a true hybrid system called Xilinx

Empower that will incorporate PowerPC 405 microprocessors from IBM with Virtex-

II reconfigurable logic architecture [89]. It is likely that devices with RISC

microprocessor based Logic Blocks are not too distant!

Future FPGA architectures will no doubt have significant effect upon the direction of

work that follows this thesis. Algorithms that need a combination of fixed-bit data

intensive image processing and more complex arithmetic such as matrix inversions

could potentially benefit. The combination of EA and conventional classifier seen in

GENIE is an example of such an algorithm.

At the deepest level it is the FPGA architecture that dictates what algorithms will be

efficiently implemented. This is particularly true for modern FPGAs capable of

complete system-on-the-chip implementations. However, at a higher level there are

other considerations: the way FPGA devices are connected, implemented and used

with respect to a host processor.

2.3.2 Custom Computers

The most prevalent type of Custom Computer is a plug in device that communicates

with a microprocessor through an expansion bus. Custom Computers have been

developed and implemented by many research institutions and commercial

companies. There are many architectural choices that must be made in building a

Custom Computer. These often depend on the type of problems the machine is

intended for. These choices include memory organization, data-path widths and

48

device interconnection. These issues are explained through examples of custom

computer that have been built and used in the research community.

Device interconnection was of particular importance in the late 1980's and early

1990's when Custom Computers were first developed. This was due to the large

number of FPGA devices that had to be used to provide sufficient resources for

practical problems. Modern high density FPGAs have helped a lot with this problem.

One of the first boards to be developed was the DEC PeRle-0, produced in the DEC

Paris Research Laboratory in 1989 [90]. This board implemented 25 Xilinx 3020

FPGAs in a 5 by 5 array. A similar sized board, known as Splash was also built by the

Supercomputing Research Center in 1989.

2.3.2.1 An Early Custom Computer

Splash-2 is an extension of the original Splash board, and was also developed at the

Supercomputing Research Center, Maryland [91]. The Splash-2 architecture is

illustrated in Figure 29 and consists of a Sun Sparc Station host, an interface board

and one or more Spash-2 array boards.

Each Splash array board implements 17 Xilinx XC4010 FPGAs. 16 of these are

connected in a linear array, which is ideal for systolic or pipelined processing.

Additionally, 512 Kbytes of memory is attached to each FPGA. This is an excellent

example of how memory is usually implemented on CC boards and is known as Local

Memory. In the Splash-2 and most custom computers, this is necessary to avoid

problems with the limited memory bandwidth through the global bus.

FPGAs provide the computational resources to implement a particular algorithm.

While this is sufficient for highly systolic computations, most algorithms require more

flexible memory access. Applications can be accelerated with CC by using specialized

memory address hardware. A good design means that all parts of the computation

have access to their stored variables, as they are required. Distributed memory, where

there are multiple, smaller memories distributed on a board, provide large bandwidth

to stored variables. This means designs can be implemented efficiently and algorithms

accelerated. Modern FPGA devices are also designed with this in mind, and now have

49

sufficient input/output resources to enable 1 FPGA to access 5 or more local

memories. This will be described in more detail with respect to the Firebird CC.

The interface board in the Splash system contains a programmable clock and provides

DMA access between the host and local memory. Two user programmable FPGA’s

(XL and XR) can be configured for application specific data stream pre-processing

and post-processing as data is supplied to and fetched from the Splash array boards. A

variety of both synchronous and asynchronous communication paths exist between

the Host and the array boards. These are used to supply and fetch data at run time and

configure the FPGA surface.

X1 X2 X3 X4 X5 X6 X7 X8

BAR

X9X10X11X12X13X14X15X16

X0

LEFT SPLASH ARRAY BOARD

X1 X2 X3 X4 X5 X6 X7 X8

BAR

X9X10X11X12X13X14X15X16

X0

SPLASH ARRAY BOARD(S)

X1 X2 X3 X4 X5 X6 X7 X8

BAR

X9X10X11X12X13X14X15X16

X0

RIGHT SPLASH ARRAY BOARD

SUN HOST

XL

XR RIGHT

GOR/VALID

MEMORY BUS

SPLASH INTERFACE BOARD

X8

256K x 16 RAM

Xilinx 4010

LEFT SIMD

Figure 29: Architecture of Splash-2 System [91]

The Splash-2 was applied to a number of problems including searching genetic

databases, fingerprint matching and Automatic Target Detection (ATD). Due to the

limited resources available on each XC4020 FPGA, implementation on the Splash-2

requires problem partitioning. This means the problem is decomposed into a number

50

of components, each of which is implemented on a different FPGA. Streamed or

pipelined algorithms are most easily decomposed with the Splash linear array

architecture [91].

2.3.2.2 Custom Computers for Real-Time Image Processing

A major consideration in producing a Custom Computer capable of real-time

processing at the sensor is data IO. It is important that data can be sent to and received

from the CC at high speed. It is also important that CC data paths between FPGAs

and local memory do not limit data throughput. The Giga-Ops Corporations G800

custom computer was designed specifically for high-speed digital signal and video

processing [92], and therefore of interest to this thesis.

Figure 30: Architecture of G800 Custom Computing Board with G210 Module

The G800 itself is a baseboard, which is then extended as required to meet application

specific requirements. The G800 is illustrated in Figure 30. The control logic is

implemented in two XC4003H FPGAs from Xilinx. They implement interfaces to a

Vesa Local Bus as well as a Vesa Media Channel Bus. Up to 16 G210 computing

modules, containing FPGAs and Local Memory can be installed on the baseboard.

The G210 is also illustrated in Figure 30 and contains 2 XC4010 FPGAs from Xilinx,

as well as a 32 bit memory port for each FPGA. In addition, one custom input / output

module such as a video frame grabber / encoder can be installed.

51

The G800 system is particularly well suited for real time image and video processing

applications. This is due to the dedicated video buses, and availability of standard IO

cards for translating composite video to NTSC.

The RCA-3 is another Custom Computer architecture that has flexible, high-speed IO

and is intended for real-time processing. It was developed relatively recently at the

Los Alamos National Laboratory and is illustrated in Figure 31.

Figure 31: The RCA-3 Architecture

The RCA-3 is based around 3 FPGA processors. The fewer number of FPGAs is

indicative of the increased capacity of modern FPGA devices. Processors A and C

each have 4 independent banks of memory. Additionally, each Processor has access to

a shared memory bank indicated on the right of Figure 30. This is to provide large

block transfer capability between pairs of processors. A and B processors are paired,

as well as processors B and C. This is an excellent design choice and allows the

memory to be toggled between processors. For example, processor A performs some

computation on the input stream and writes its result to shared memory bank 1.

Shared memories 1 and 2 are then toggled. Processor B can begin processing the new

52

block in shared memory 1 while Processor A prepares the next block in shared

memory 2. Memories can be toggled in one clock cycle, which is ideal for pipeline

processing of block-orientated data [93].

The RCA-3 was designed for high-speed IO and has room for 3 I/O daughter cards.

LANL has developed daughter cards that implement the Front Panel Data Port

(FPDP) standard as well as a VXI bus interface. These daughter cards provide First-

In-First-Out (FIFO) memory, which is ideal for using the RCA-3 in a larger, often

asynchronous system.

2.3.2.3 Custom Computers in this thesis

Two custom computers are used in this thesis. One is based around the Xilinx

XC6216 FPGA that was described in Section 2.3.1.1, and is called the HotWorks CC

built by Virtual Computer Corporation. It has a single XC6216 FPGA and

communicates through a 32-bit PCI bus to standard host computer. Implementations

in this thesis did not use the local memory available and therefore further discussion is

left to Chapter 4.

The second custom computer, used in the subsequent chapters, is the Firebird CC

from Annapolis Microsystems. The Firebird is based around a single Virtex 2000E

FPGA from Xilinx. This device was described in Section 2.3.1.2 and has substantial

computational resources and large quantities of distributed on-chip RAM. Since only

1 FPGA is used, the problem of partitioning encountered in early CC implementations

is avoided.

Using only one FPGA also makes the custom computer architecture very simple.

Figure 32 illustrates the Firebird CC. There are five independent banks of local

memory: four 64-bit memory banks, and a 5th 32-bit memory. In total, this means

there is a 288-bit data-path between the FPGA and the memory. On the left of Figure

8, a 64-bit 66MHz PCI bus connects the FPGA to the host computer. Additionally, a

dedicated I/O port that could potentially be used for real-time processing is seen on

the right of Figure 32.

53

The Firebird has significant bandwidth to local memory and a standard PCI interface,

and therefore the custom computer architecture did not significantly affect design

choices in this thesis. The Firebird CC does not support the partial reconfiguration

available in the Virtex FPGA, and the entire device must be configured at once.

Alternatives to partial reconfiguration are described in Chapter 3.

Figure 32: The Firebird RCC

2.3.3 Evolvable Hardware

The building blocks for hardware efficient AFE have now been described. These

come from two sources: algorithmic components of conventional AFE solutions, as

well as the hardware resources available in FPGA devices. Background to EA, and

how they might be used to optimize these building blocks was also described. Before

continuing, it is worth considering how EA have been used in combination with

FPGA devices in literature.

WILDSTARTM

I/O Mezzanine
Connector

228 pin
MICTORTM

Conn

ZBT
SRAM
4-8 MB

ZBT
SRAM
4-8 MB

ZBT
SRAM
2-4 MB

ZBT
SRAM
4-8 MB

ZBT
SRAM
4-8 MB

64
bi

ts

64
bi

ts

Data (66 bits)

Data (96 bits)

VIRTEXTME

XCVE1000 - 2000
PCI

Controller
PCI

Connector
PCI Bus
(64 bits)

32
bi

ts

64
bi

ts

64
bi

ts

FIREBIRDTM - PCI Version Card

Copyright 2000 Annapolis MIcro Systems, Inc.

66 MHz

LAD Bus (64 bits)

LAD Bus (32 bits)

LAD Bus (32 bits)

54

The combination of Reconfigurable Logic devices and EA optimization in the field of

Evolvable Hardware (EHW) was suggested independently in Japan and Switzerland

in 1992 [94]. Today, there are several international conferences and workshops,

dedicated journals and also Evolvable Hardware sessions in most major FPGA and

Reconfigurable Computing meetings.

2.3.3.1 Classification of EHW Approaches

In this thesis, the term Evolvable Hardware is used to refer to a broad range of

approaches with the common components of EA and FPGAs. However, two classes

of experiment can be considered. The first is motivated by the long execution times of

EA experiments in software. Such experiments have application specific

implementation requirements and the flexibility of CC makes it a natural choice for

accelerating EA experiments. This is a primary motivation of this thesis.

The second class of experiment is concerned with hardware design itself, and

therefore the EA is usually applied to more primitive hardware building blocks. Over

the last few years EHW has even grown to include using EAs for antenna design,

vehicle design and other physical design problems. However, the distinction between

these two approaches is often blurred. In the first case, accelerating software EA

experiments often requires algorithmic trade-offs in order to implement chromosomes

efficiently on FPGAs. In the second case, knowledge of high-level algorithms is often

required in order to apply EHW design principles to practical problems.

A classification of EHW that is better defined concerns where the EA fitness

evaluation takes place. Intrinsic EHW is when the hardware device is used for the

fitness evaluation. The approach of this thesis can be considered intrinsic. There is a

large body of work on extrinsic EHW. In this approach software models or analogue

circuit simulators are used to evaluate fitness. Further discussion is restricted to

intrinsic EHW since Custom Computer acceleration of EA experiments is a primary

motivation.

55

2.3.3.2 EHW Devices

FPGAs are a popular choice in EHW due to their flexibility and speed. A great deal of

work in EHW has used the XC6200 series FPGAs. This is mainly due to Rapid

Reconfiguration, which means chromosomes can be swapped in and out of the FPGA

very quickly [94]. However, they must not be considered the only devices capable of

implementing evolvable hardware techniques. It has been suggested that EHW be

applied to memory-based devices directly [95]. Dedicated architecture devices would

also be suitable for evolutionary design approaches such as neural network and fuzzy

logic chips.

Kajitani et al. in [96] built a custom EHW device that included reconfigurable logic,

large on-chip memory and a 16-bit CPU. This device was used to evolve a prosthetic

hand controller. The EA was accelerated by a factor of 62 compared to the same GA

implemented on a 200MHz Sparc2 workstation. The same research group in [97] also

built and implemented the GRD Chip, which includes a 16-bit CPU and a binary tree

of 16 Digital Signal Processors (DSP). A genetic algorithm is implemented on the

CPU, which optimizes a neural network implemented on the 16 DSPs. Nine GRD

chips were used to evolve an adaptive equalizer for digital communications, and

achieved a speed-up of 160 compared to a Sun Ultra2 200MHz workstation.

2.3.3.3 FPGAs as Soft Silicon

Work by Thompson in [98], [95] is a good example of the potential of intrinsic

evolution. In this work an EA is applied directly to the FPGA configuration bit-string.

The device used was the XC6216 rapidly reconfigurable FPGA. The experiment

aimed to optimize a circuit that would discriminate between 1kHz and 10kHz square

waves. A designated output pin should be high for one frequency and low for the

other. The fitness evaluation was measured by directly observing the designated

output pin. No constraints were placed on the XC6216 configuration bit-string, and

binary mutation and crossover could be applied directly.

56

Thompson’s non-constrained experiment produced several configurations that took

advantage of the continuous-time dynamics of the FPGA device. These analogue

solutions proved deceptively difficult to analyze but produced surprisingly accurate

results. The solutions produced were found to rely on the detailed physics of the

hardware: time delays, parasitic capacitances, cross-talk and other low level

characteristics of the particular FPGA.

The circuits evolved with Thompson's approach are inherent to the type of FPGA

used. This has led some researchers to ask the question: could a different type of

Reconfigurable Logic exploit this technique more effectively? Work in [99] and [100]

describe some of the design choices and evolution at the transistor level has been

suggested in [101].

2.3.3.4 Accelerating EA Experiments

The Splash-2 was one of the first custom computers to be used to accelerate EA

experiments [102]. Solutions to the Traveling Salesman problem were found by using

4 of the 16 FPGAs and achieved a speed-up of 10.6 compared to a 125 MHz

workstation. About the same time, another custom computer called the Armstrong III

was used in [103] to solve a circuit-partitioning problem. Speed-up of 8.6 was

observed compared to a 60Mhz workstation.

In the experiments just described, the entire GA algorithm, including fitness

evaluation and genetic operators were implemented in the custom computer. The GA

is inherently parallel, and simple in structure and therefore can be greatly accelerated

in this way. Other examples of this approach include [104] where a steady-state GA

was implemented on a Lucent Technologies FPGA and achieved speed-up of 730

compared to a 333MHz DEC Alpha. Recently in [105] a Virtex XCV300 FPGA was

used to achieve speed-up of 320 compared to a 366MHz Pentium II for a protein-

folding problem. In this work, authors project that by using the larger XCV3200E

FPGA that speed-up of 9600 could be achieved.

Several other researchers have suggested complete GA-pipelines for FPGAs. Tufte

and Haddow [106] presented a GA pipeline that is targeted at Virtex FPGAs but is yet

57

to be implemented. Sidhu et al. in [107] describes a Genetic Programming pipeline

implemented on a XC6264 FPGA. Speed-up of 19 compared to a 200MHz Pentium

Pro was obtained for an arithmetic regression problem, and three orders of magnitude

for a logic-based multiplexer problem.

Implementing the entire GA on custom computers has been shown to achieve

significant speed-up compared to software implementations. However, since the host

and custom computer are usually tightly coupled, co-processor architectures are also

possible. In [108] a GA co-processor using a Virtex 1000 device was used to solve an

Iterated Prisoner's Dilemma. Speed-up of 200 compared to a 750MHz Pentium-III

was reported. Authors also suggest that by using the partial reconfiguration and read-

back functions of the Virtex FPGA, speed-up of 400 could be expected. Koza in [94]

used a co-processor approach with the XC6216 FPGA. For reasons that are described

in Chapter 3, this thesis also uses a co-processor approach.

2.3.3.5 EHW applied to AFE

One of the earliest EHW efforts to address problems related to AFE, was carried out

in the Electro-Technical Laboratory in Japan [109]. In this work EA was applied to

Programmable Logic Devices (PLD). They used a variable-length encoding scheme

that dictated specific connections in the PLD AND-OR array. Their system was

applied to a binary character recognition problem. A good account of the subsequent

work by this group can be found in [110]. Much of this work is based on custom

EHW chips that were described in Section 2.3.3.2. More recently in [111], the

XC6264 FPGA was used to evolve a 9by9 linear spatial filter.

Use of EA and FPGAs for practical AFE problems is yet to mature. In fact, at the time

of writing, very few implementations have been reported that reach the level of

complexity that this thesis develops. This is partly due to the fact many EHW

researchers are interested in applying EA to low-level building blocks. Thompson's

work [98] is an excellent example of the potential of this approach. Before continuing,

two other areas relevant to this thesis are briefly described. These are FPGA

58

implementations of evolutionary neural networks and FPGA implementations of AFE

algorithms that do not use EA.

Just prior to submission of this thesis, work in [112] presented a novel block based

neural network. This network is more easily implemented in FPGAs than traditional

neural networks and is optimized using EA to solve a robot controller problem.

However, the network has not been implemented. Another interesting evolutionary

neural network that has been implemented in FPGAs is reported in [113]. The custom

computer is called the CAM-Brain machine and uses 72 XC6264 FPGAs. A neural

network variant is implemented within a cellular automata model, and an EA is used

to optimize the connectivity and weights of the network to solve a robot controller

problem.

Work by Figueiredo et al. [114] describes implementation of a probabilistic neural

network for multi-spectral image classification. The network was applied to the

spectral dimension of the raw image cube without feature extraction and spatial

information was not included in the classification. Other Neural Network

implementations are described in Chapter 5.

59

2.4 Chapter Summary

The Literature Review has described all the basic elements from which this thesis

builds. In doing so the design space for hardware AFE has been defined. The major

topics relevant to future chapters are:

• Extracting useful information from images where noise is hard to characterize

requires both linear and non-linear filters.

• Feature enhancement/extraction and classification are important and closely

tied aspects of AFE problems.

• Evolutionary Algorithms are a computationally intensive, but flexible, and can

be applied to models that are traditionally hard to optimize.

• Custom Computers have flexible resources to implement application specific

hardware and can provide substantial speed-up compared to software

implementations.

• Examples in Evolvable Hardware demonstrate how EA can be applied to low-

level FPGA building blocks to find extremely hardware efficient solutions to

various problems.

A common theme of this thesis is hybrid architectures. Examples of this, identified in

the Literature Review are hybrid linear / non-linear filters [Section 2.1.1], hybrid

feature extraction / classification architectures [Section 2.1.4], hybrid optimization

schemes [Section 2.2.5], and hybrid Microprocessor / FPGA devices [Section 2.3.1].

Hybrid approaches are attractive since they often can combine the best parts of

multiple techniques. While the relationship between this and crossover is probably

chance, it is safe to say that the flexibility of EA means hybrid approaches can be

optimized as easily as their constituent parts.

In the context of design spaces discussed in the Introduction, the approach of this

thesis is a hybrid of FPGA based EHW and software AFE algorithms. Design spaces

to be described are dictated largely by the combination of computational resources

available in FPGAs and algorithmic components of traditional AFE.

60

Chapter 3

Design Considerations

This chapter is intended as a design guide for readers interested in accelerating EA

experiments using custom computers. The major design choices are described as well

as more detailed descriptions of hardware architectures used in the thesis. This

chapter is not concerned with AFE particularly although image processing

architectures are described. Readers interested more in experimental work can begin

with Chapter 4.

Maintaining a population of solutions means EA can produce robust solutions in

many problem domains but it also leads to large computation times. Evolutionary

Algorithm (EA) experiments can be implemented on Custom Computers (CC), with

substantial speed-up compared to software implementations. To obtain significant

speed-up there are three main design choices that must be considered. These will be

described in turn:

1. How the experiment is divided between the host processor and CC.

2. How the chromosome will be implemented using CC.

3. How chromosomes will be swapped in and out of the CC.

3.1 Division of Labor

A major design choice when implementing EA experiments is the division of labor

between host and CC. By tightly coupling the host and CC both the flexibility of

software and the performance of application specific hardware can be exploited. In

tightly coupled systems, one of the main design considerations is the communication

61

between the host and CC. Communication across the global bus is generally much

slower than CC computation and therefore must be considered carefully.

3.1.1 The Fitness Evaluator

Usually the most computationally intensive part of EA is the fitness evaluation. This

involves evaluating how well each individual in the EA population solves the

particular problem. Fitness evaluation is composed of:

1. Chromosome Execution: A candidate solution is applied to the training data.

2. Fitness Metric: A measure is derived based on the success of the chromosome

execution in achieving the desired result.

When an EA are applied to image processing problems, chromosome execution can

involve several data intensive operations. These data intensive operations can be

greatly accelerated by the CC. To minimize communication from CC-to-host, it is

desirable to also implement the Fitness Metric in the CC. This way, the host program

only needs to retrieve the fitness score for each evaluation.

Writes GO signal

Writes Chromosome

Reads Fitness Score

Reads DONE signal

HOST

CC

Writes Bit-Stream

Writes Training Data
At Start of EA Experiment

HOST

CC

 During Evolution
for each chromosome

HOST

CC

Reads Result DataAt End of EA Experiment

Figure 33: Communications for Fitness Evaluator Architecture

The host/CC communications for the Fitness Evaluator is illustrated in Figure 33.

Large volume training images are loaded once at the start of an EA run, to the CC

62

local memory. Communication between host and the CC during the evolution

involves downloading a particular chromosome, initiating the chromosome

evaluation, and then retrieving the fitness score. Only at the end of the EA run, is the

result of chromosome execution retrieved for inspection.

Sometimes it is convenient to calculate the Fitness Metric in software. Reasons for

this include:

1. It is difficult to calculate in CC due to the chromosome architecture. This is

the case for experiments to be discussed in Chapter 4.

2. The Fitness Metric is complicated and may require complex hardware such as

floating point arithmetic.

3. The best Fitness Metric is not known and increased flexibility is required.

When the Fitness Metric is calculated in software, the CC-to-host communication is

greater since the result of chromosome execution must be returned to the host for each

chromosome. In the case of image processing, the result is often an entire image, and

therefore this communication can be large.

All implementations in this thesis use the single chromosome fitness evaluator

architecture described. This is due to complexity of problems addressed, which leads

to complex chromosomes that push resource limits of state-of-the-art FPGA devices.

Many of the EA implementations that were described in the Literature Review use the

single fitness evaluator architecture, but also implemented the EA in hardware. The

significant speed-up achieved by some of these implementations was reported. A

problem with this approach is lack of flexibility. Due to the experimental nature of

this thesis the co-processor approach was used so that representation and EA variants

could be explored. Also, the computation times for AFE fitness evaluation in this

thesis is large compared to the GA algorithm itself and therefore significant speed-up

can be obtained with the co-processor approach. It is foreseeable, that the EA could be

moved to the CC, once this research matures, to obtain greater performance.

63

Before continuing, it is worth considering divisions of labor when more than one

fitness evaluator is implemented in the CC. In this case, the motivation for moving the

EA to hardware is stronger.

3.1.2 Multiple Fitness Evaluators

A spectrum of host/CC architectures can be imagined, which is depicted in Figure 34.

On the left of Figure 34 is the Fitness Evaluator architecture. In this model the CC

implements one chromosome at a time.

Chromosome

Chromosome

C
hr

om
os

om
e

Chromosome

Chromosome

EA
 EA
Chromosome

 EA
Chromosome

 EA
Chromosome

 EA
Chromosome

 EA
Chromosome

 EA
Chromosome

 EA
Chromosome

 EA
Chromosome

EA

Fitness Evaluator Multiple Fitness
Evaluators with EA

Everything
on the Chip

Figure 34: The Division of Labor

The EA uses a population of chromosomes in optimization and therefore is inherently

parallel. Multiple fitness evaluators can therefore be implemented to achieve speed-

up. At the limit of this approach an entire EA population could be implemented in

CC. However, since each chromosome must be configured and its fitness score

retrieved by the host processor, communication between the host and CC can become

large. A solution to this problem is to move the EA itself to the CC. This is the 2nd

model illustrated in Figure 34 and can lead to speed-up in 3 ways:

1. Speed-up through CC acceleration of chromosome evaluations.

2. Speed-up by evaluating many chromosomes in parallel.

3. Speed-up by avoiding relatively slow host/CC communication.

The 3rd architecture in Figure 34 takes this a step further. In a massively parallel

system (if enough chromosomes can be implemented) it is often desirable to avoid

complex centralized control. A novel solution to this problem is to distribute the EA

64

amongst the multiple Fitness Evaluators. How the EA is applied in this situation is an

interesting topic, which is described in detail in a paper co-authored with Simon

Perkins, by the author: Everything on the Chip [115]. This paper is included for

reference in Appendix B. In this work an entire population of non-linear Stack Filters,

which are described and used in Chapter 4, are evolved completely in CC.

A problem with moving the EA to the CC is loss of flexibility. Representation is

generally restricted to bit strings, and genetic operators must be kept simple. Such

restrictions may be appropriate for some problems. In Everything on the Chip [115],

these restrictions dictated evolution of a novel superset of Stack Filters without a loss

in performance. As FPGA devices become larger, it is believed multiple fitness

evaluator architectures will become more useful for practical problems.

3.2 Chromosome Architectures

The second design consideration concerns the chromosome architecture. EA

experiments will benefit most from CC implementation if the chromosomes can be

mapped efficiently to the FPGA device. Exactly what algorithms can achieve

significant speed-up on FPGAs is still a question of research. Image, video and signal

processing has received particular attention since they are data intensive [116]. Some

ways by which FPGAs gain significant speed-up include:

• Algorithmic Parallelism: The algorithm has inherent parallelism. This is often

true in image processing algorithms.

• Data Intensive: This is typical of image processing algorithms, which use

simple computational elements but are required to process very large amounts

of data. These types of algorithms usually perform poorly on microprocessors

due to bottlenecks in the data flow. Custom computers can take advantage of

the algorithm specific data requirements and implement high throughput

pipelined structures.

65

• Tailored Data-paths: Since the FPGA surface operates at the bit level, data-

path bit-widths can be tailored to the algorithm. This can lead to significant

resource savings and therefore more efficient use of hardware.

• Tailored Arithmetic Units: In an FPGA, arithmetic operations can utilize on-

chip memory and instruction-level pipelining. This reduces the number of

memory accesses required to complete a sequence of operations, which would

normally dominate computation time in a conventional microprocessor. Note,

FPGAs can implement fixed-point arithmetic efficiently, but currently lack

computational resources for efficient floating-point arithmetic. It is possible

future FPGA devices will include dedicated floating-point units, which may

help with this problem.

• Flexible Address Generation: The specific memory and address generation

requirements of an algorithm can be optimized to minimize contention. This

means all components of an algorithm can have access to variables, as they are

required.

Another important consideration in the hardware design of large, complex algorithms

is modularity. A modular approach attempts to decompose the problem into a number

of components, each of which is simpler to implement than the complete algorithm.

Modularity can be taken a step further in which the algorithm is decomposed into a

number of identical components. This is particularly attractive due to the homogenous

nature of FPGA architectures. In this case, components are often referred to as cells.

This can simplify hardware design significantly and is an approach often used in this

thesis.

There are two main ways of achieving speedup in image processing within the context

of a modular architecture. These depend on how cells are connected on the FPGA,

which leads to either pixel parallelism or instruction-level parallelism. The two

extremes of this approach are illustrated in Figure 35, but any combination of pixel

and instruction-level parallelism is possible. The next two sections will describe pixel

parallelism and instruction-level parallelism in more detail.

66

Cell

Cellular Array for Pixel Parallelism

Image Pixel Stream

Image Pipeline for Instruction
 Level Parallelism

Instruction 1

Instruction 2

Instruction 4

Instruction 3

Figure 35: Cellular Array (left) and Image Pipeline (right)

3.2.1 Cellular Arrays for Pixel Parallelism

Cellular arrays are a natural model for image processing [117] which exploit pixel

parallelism. They consist of an array of cells in two, three or more dimensions. Each

cell is associated with an image pixel and has local communication to neighboring

pixels at all times. This high-bandwidth local communication is ideal for

implementing spatial filters. Cellular Arrays are attractive due to their fine grain

parallelism and local routing resources. This inherently parallel model is poorly suited

to implementation on general-purpose microprocessor based systems. FPGAs can

implement a programmable, maximally parallel implementation of a cellular array,

but can only efficiently implement a small numbers of cells. Large arrays require

multiple FPGAs and/or time multiplexing, and array initialization and result reading

can soon dominate the computation time.

Within the context of a chromosome in an evolutionary algorithm, large-scale cellular

arrays are generally not required. Learning is usually carried out with small training

images and therefore only a small array is required. Cellular arrays are often applied

iteratively. Iterations are equivalent to instructions or image-processing operators.

Multiple instructions will take multiple clock cycles, but the instruction is applied to

67

the entire image in 1 clock cycle. Chapter 4 describes maximally parallel

implementations of several cellular architectures for AFE related problems.

3.2.2 Image Pipelines for Instruction-Level Parallelism

Another modular architecture used extensively in this thesis is the image pipeline. In

this case only one cell, of the equivalent cellular architecture, is implemented. Input to

the cell is through a continuous stream of pixels. They are supplied to the cell one

pixel at a time, and usually in the case of images, in raster scan order. Although this is

only one type of data arrangement, it is simple and naturally suited to real-time

systems where input to the processor is often directly from a sensor. Speed-up is

achieved by performing multiple instructions on the stream in parallel. This is

illustrated on the right of Figure 35. After an associated latency, which is determined

by the number of instructions, a pipeline is capable of producing a result every clock

cycle. This means high-though put, and substantial speed-up compared to

microprocessors can be achieved for multiple instruction pipelines.

Unlike cellular architectures, accessing a local neighborhood within an image pipeline

must be carefully considered. All instructions in a pipeline are being executed at the

same time, which can be demanding on memory bandwidth. Several ways of

implementing spatial filters are described in Chapter 6.

The image pipeline is an effective way of dealing with large volume data. Figure 36

illustrates how this architecture is extended to include multi-spectral images by

allowing multiple image channels as input. Cells read from one or more channels,

perform some computation, and then output the result. Links between cells can also

be considered images and are similar to scratch planes described within the GENIE

system. This consistency in data flow is important when cells can be applied to either

the original data cube or to outputs from other cells.

68

Figure 36: Multi-Spectral Image Pipeline

3.3 Chromosome Configuration

The Fitness Evaluator architecture has been described and abstract architectures for

image processing chromosomes presented. The only question remaining is how a

particular chromosome can be downloaded to the CC for evaluation. A first approach

is suggested by the nature of FPGA device. SRAM FPGAs can be reprogrammed

many, many times and therefore different bit-streams, which simply encode different

chromosomes, could be downloaded each time. Unfortunately, most modern FPGA

devices have large configuration bit-streams and therefore reprogramming the FPGA

can take many milliseconds. Reconfiguration times in fact have increased and are

likely to continue to do so as FPGAs reach higher and higher densities. Such times

(1ms for the Virtex1000 FPGA) can often be large compared to the time required for

fitness evaluation and therefore the bit stream is too slow to configure each individual

in the population at run time.

Note, this is not the case for the Xilinx XC6216 rapidly reconfigurable FPGA and

hence its popularity within EHW research groups. The techniques to be described are

most useful to non-Rapidly Reconfigurable FPGAs, however the ideas are also

applicable to the XC6200 series FPGAs.

69

Chromosome configuration can be considered a 2-stage process. This approach is

motivated by the observation that a general purpose EA-accelerator needs to be

configurable for:

(1) Different problems and

(2) Different chromosomes in the population for each problem.

For a particular problem, there is generally a specific representation and therefore

search space. Each chromosome, in a particular EA experiment, is an instantiation of

this representation. It is likely that two chromosomes from one experiment will have

more in common than two chromosomes chosen from two different problems. In fact,

for a particular EA experiments, chromosomes can have very similar implementation

requirements. A key to efficient implementation is to localize where chromosomes

differ so that reconfiguration time can be minimized. We present Figure 37 and the

following terminology for clarity.

The Generalized Chromosome is implemented once, at the beginning of the EA run,

using the FPGA programming bit-stream, and is common to all chromosomes for a

particular EA problem. This is referred to as the 1st level of configurability. The

Generalized Chromosome requires structure in order to localize differences and

minimize reconfiguration times, and also flexibility to implement all EA

chromosomes of interest. The second level of configurability is then used to rapidly

fine-tune the Generalized Chromosome, to implement particular EA individuals. The

result of the two-stage configuration process is a hardware implementation of EA

chromosomes where fitness evaluation can be carried out at high speed.

Typically a Generalized Chromosome might define a set of operators, multiplexers

and communication paths, which require perhaps 1 million FPGA configuration bits.

The particular chromosome might then define things like the paths through

multiplexers, and the specific value of filter coefficients which requires only a few

hundred bits to define.

70

Figure 37: The Generalized Chromosome

The choice of Generalized Chromosome is important since it defines the EA search

space, and therefore affects the EAs ability to find solutions to a given problem. A

large proportion of this thesis is directed at finding suitable Generalized

Chromosomes for AFE problems. How the second level of configurability is

implemented depends on the device being used and is discussed further in the next

two sections.

3.3.1 Rapid Reconfigurability

When using rapidly reconfigurable FPGAs such as the Xilinx XC6216, the 2nd level

of configurability is also implemented with the FPGA bit stream. Partial

Reconfiguration is used to fine-tune the Generalized Chromosome to implement

particular chromosomes. The two-stage process is then:

1. A Generalized Chromosome is implemented at the start of the EA run with the

FPGA bit-stream.

2. Particular EA chromosomes are then instantiated by using partial

reconfiguration of the FPGA bit-stream.

Since fine-tuning of the Generalized Chromosome also involves the FPGA bit-stream,

the functionality and connectivity of each FPGA logic block can vary from one

chromosome to the next. This is considered hardware reuse at the gate level, which is

explained further in the next section.

For each EA chromosome

Generalized
Chromosome

Localized
Differences1st Level of

Configurability, the
FPGA Bit-stream

At start of EA run

2nd Level of
Configurability

71

The two-stage configuration can be found in most FPGA implementations of EAs in

literature, although it is often not identified. Work described in [107] used XC6264

FPGAs and implemented Tree Templates in the 1st level of configurability. Tree

Templates were then instantiated with particular chromosomes with Partial

Reconfiguration.

3.3.2 Alternatives

Modern high density FPGAs have moved away from memory mapped rapidly

reconfigurable architectures seen in the XC6200 series. A second level of

configurability must therefore be implemented within the Generalized Chromosome

itself. Essentially, this involves increasing the complexity of design to include on-chip

configuration registers. These configuration registers then set particular control lines

in the design that dictate arrangement and precise behavior of problem specific

hardware components. An example of this approach can be seen in Figure 38.

Multiplier Divider

Input 1 Input 2

Multiplexer

O
n-

C
hi

p
R

eg
is

te
r

 HOST
 COMPUTER
(Evolutionary Algorithm)

Figure 38: Example of the 2nd Level of Configurability

In this example, the designer has decided that the EA should optimize the type of

operation, either multiplication or division, that is applied to two inputs. Both

multiplier and divider are therefore implemented and supplied with the necessary

inputs. A single bit can represent the choice of operation. This bit is stored in an on-

chip register that can be accessed by the host processor at high speed. The on-chip

72

register controls a multiplexer, which selects either the output from the multiplication

or the output from the division.

In this example it can be seen that control lines and multiplexers can soon dominate

hardware resources. The main design consideration with this technique is therefore

hardware reuse from one chromosome to the next. Hardware reuse between

chromosomes maximizes the amount of FPGA resources being used at any one time

leading to increased performance. Several ways of implementing hardware reuse are

now described.

Gate Level Reuse

Rapid Reconfigurability means the FPGA has hardware reuse at the gate level. Such

fine-grain flexibility can also be incorporated in more conventional devices. Virtex

FPGAs from Xilinx, allow 2 look-up-tables to be configured as a dual port RAM. One

port can be tied to the host and used to program the RAM. The second port can then

be used in the design to implement user logic. Note, to implement a reconfigurable

look-up-table, the resource cost is effectively doubled (2 LUTs instead of 1).

However, if the number of reconfigurable LUTs required is small, this technique can

be useful. This technique was used to implement reconfigurable stack filters described

in Everything on the Chip [115].

Arithmetic Level Reuse

Many EA experiments do not require the fine-grain flexibility of Gate-Level reuse. In

this case, hardware reuse can be implemented in the Generalized Chromosome at a

much higher level. Generalized pipelined arrays, suggested by Kamal in [118] are an

excellent example of how such flexibility can be implemented. In this work, a

pipeline is proposed that can implement a number of common arithmetic operations

such as multiplication, division and square root by setting control lines. These

operations have very similar hardware requirements and therefore can be combined

with large area cost savings. An arithmetic array was synthesized for an Altera

Flex10K FPGA (not described) and details are summarized in Table 1 where numbers

represent Altera Logic Blocks. Although this device is not used for the remainder of

the thesis, the relative cost of the different arithmetic operations would be similar for

73

Xilinx Virtex devices. This is due to the similar level of functionality that is provided

by the Altera and Xilinx Virtex logic blocks (coarse grain devices).

Operator * / SQRT
Generalized

Arithmetic Array

Estimated Area

(Logic Blocks: Altera Flex 10K)
206 286 305 429

Resource Gain 1.98

Table 3: Resource Estimates for a Generalized Arithmetic Array

Through reuse of hardware, the computational resources available to the EA are

effectively doubled. This is considered hardware reuse at the arithmetic level. These

arithmetic arrays can be useful building blocks in many EA applications.

Operator Level Reuse

Hardware reuse can be incorporated at any part of the implementation. A particularly

useful approach to Generalized Chromosome design in this thesis was hardware reuse

at the operator level. Image processing has many computationally similar operators,

such as smoothing, edge detection, convolution and morphology. Chapter 6 describes

how flexibility can be incorporated into the Generalized Chromosome to implement a

number of these operators using the same hardware resources.

74

3.4 Chapter Summary

The major design considerations for implementing EA experiments on CC have now

been described. All experiments that follow use the single chromosome Fitness

Evaluator architecture.

The chromosomes evolved in Chapter 4 are examples of cellular arrays. The Rapidly

Reconfigurable XC6216 FPGA is used and partial reconfiguration exploited to rapidly

fine tune the Generalized Chromosome.

In subsequent chapters, chromosomes are image pipelines. This enables investigation

of more practical AFE problems and application to large volume multi-spectral image

cubes. In these chapters, the Virtex FPGA is used and partial reconfiguration is

implemented by increasing the complexity of the Generalized Chromosome.

This chapter has presented hardware design practices used by many hardware

engineers. The novel contribution of this chapter is the application of these design

practices to EA implementations. In particular:

• A clear picture of the EA co-design spectrum in terms of host / CC

communications was presented.

• A two-stage configuration technique, seen in almost all EA implementations

reported in literature, was formalized in terms of a Generalized Chromosome.

• Hardware reuse was identified as the main design consideration for EA

experiments on non-Rapidly Reconfigurable FPGA devices. Several

mechanisms for hardware reuse were suggested.

75

Chapter 4

Evolving Cellular Arrays

In this chapter, the chromosomes considered are maximally parallel cellular arrays.

This means that a cell, or processor is implemented for each pixel in a small training

image. Due to the finite resources available in FPGAs (particularly the XC6216 used

in this chapter), each cell in the array is limited in what it can implement. This makes

solution of practical AFE problems with maximally parallel implementations difficult.

The appeal of cellular arrays is the promise of massively parallel systems, with little

or no centralized control. The fact that resources are limited also promotes the

development of simple solutions, which is an excellent way to approach hardware

design in general. Finally, it is believed the cellular approach will become

increasingly important as circuit densities and FPGA capacities increase [119].

Section 4.1 describes the host-CC communication requirements for maximally

parallel fitness evaluation. Section 4.2 then describes implementation of perhaps the

simplest cellular array, cellular automata (CA). The experiment in this section is

implemented on the Hot Works CC based on the rapidly reconfigurable XC6216

FPGA. A hybrid XC6216/Cellular Automata4 model is evolved to solve a binary

pattern classification problem. This experiment demonstrates how the combination of

hardware resources and software model can lead to unique search spaces which can

be efficiently implemented and better suited for particular problems than the raw

FPGA bit-stream.

In Section 4.3, a novel approach to gray-value texture classification using Stack

Filters is described. The approach is made possible by the flexibility of EA

4 The Cellular Automata model is dictated by the resources available on the XC6216 FPGA

76

optimization techniques. Stack filters can be implemented very efficiently in CC and

therefore may be suitable for maximally parallel implementations.

4.1 Maximally Parallel Fitness Evaluation

FPGA resources are usually homogeneous, and spatially distributed and therefore

naturally suited to maximally parallel implementations. In this case, significant speed-

up can be achieved for chromosome execution. However, since pixel processors are

spatially distributed across the FPGA, both loading training data and calculating the

fitness metric is more complex.

 Pixel
Processor

Training
 Data

Fitness
 Metric

 Pixel
Processor

Training
 Data

Fitness
 Metric

 Pixel
Processor

Training
 Data

Fitness
 Metric

 Pixel
Processor

Training
 Data

Fitness
 Metric

 Pixel
Processor

Training
 Data

Fitness
 Metric

 Pixel
Processor

Training
 Data

Fitness
 Metric

Global
Fitness
Metric

HOST

Figure 39: Ideal Host/RCC Architecture

Figure 39 illustrates the ideal architecture for maximally parallel implementations. In

this case, the training data and the fitness metric are implemented local to the pixel

processor. Since the array exploits pixel parallelism, it is desirable that training data

be supplied to all pixel processors at the same time. This would require large

bandwidth to a centralized memory and therefore is best implemented in small,

distributed memories across the array. The fitness of an image-processing algorithm is

often based on a sum of distance measures for each pixel. The distance measure for

each pixel can be implemented at the output of the pixel processor. Global

communication is then required to combine these measures to produce a single fitness

77

score. If this can be implemented in CC, the CC-to-Host communication is

minimized.

Due to resource limitations of the XC6216 FPGA, the experiments in this chapter use

a different architecture, which is illustrated in Figure 40. Dashed lines in Figure 40

indicate the host communication with the array. In this case, the communication

requirements are greater. Training data is stored on the host computer, and must be

sent to the CC for each chromosome evaluation. The Fitness Metric is implemented

on the host and therefore the final output of the array must be sent back to the host for

each chromosome. The advantage of this approach is that resources do not have to be

used to implement an on-chip Fitness Metric. This means more pixel processors can

be implemented and therefore greater pixel parallelism can be achieved.

 Pixel
Processor

 Pixel
Processor

 Pixel
Processor

 Pixel
Processor

 Pixel
Processor

 Pixel
Processor

 Pixel
Processor

 Pixel
Processor

 Pixel
Processor

HOST

Figure 40: Actual Host/RCC Architecture

4.2 Evolving Cellular Automata

Cellular Automata have developed under a number of different names from a variety

of fields. John von Neumann is known to have developed the idea of cellular

automata in the late forties to model complex, extended systems [120]. In their

simplest form, Cellular Automata can be considered a homogeneous array of cells in

one, two, three or more dimensions. Each cell has a finite discrete state. Cells

communicate with a number of local neighbors and update synchronously according

to deterministic rules. The rules usually employ:

78

• Spatial locality: A cell updates its state depending on the state of its

surrounding cells (referred to as a neighborhood)

• Temporal locality: A cell updates its state depending on the state of itself and

neighbors a small number of time steps in the past (usually one).

Figure 41 illustrates the process for a one-dimensional CA, where each cell can have

one of two possible states (a binary CA) and each cell communicates with its

immediate neighbors. Figure 41 also includes an example rule table for this CA. The

bold entry corresponds to the update rule used to take the highlighted cell or state 0 to

state 1 in the next time step. The number of neighbors that a cell communicates with

is called the CA radius. In the case of Figure 41, the CA has a radius of 1. The number

of states that a cell may reach is not limited but must be finite. The state of every cell

within a CA at any particular moment in time is often referred to as the CA

configuration [121].

State Left Right New State

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Figure 41: One Dimensional Cellular Automata and Rule Table Example

CA’s can produce a wide variety of complex behavior. The CA structure is simple

and easily definable and much time has been spent on classifying CA global (or

emergent) behavior. Wolfram in [121] has exhaustively investigated one-dimensional

binary CA’s with a radius of 1. The exponential increase in rule table combinations

for CA’s of higher dimension and larger states however has meant that CA behavior is

still largely unexplored.

0 1 11 0

1 0 01 1

Cells at Time = 0

Cells at Time = 1

79

Several researches have used Evolutionary Algorithms to find cellular automata rule

tables that produce useful behavior. Melanie Mitchell and James P. Crutchfield of the

Santa Fe Institute explored application of GA to one-dimensional binary CA to

perform a density classification task [122].

Most relevant to experiments of this chapter are works by Sahota, which evolve

cellular automata to perform binary image processing. Figure 42 is an example of the

types of training images that Sahota used in [123]. The CA is first initialized with an

input image, examples of which can be seen on the left of Figure 42. The fitness of a

particular CA rule table is based on how closely the CA array matches the desired

output image (shown on the right of Figure 42) after a predefined number of

iterations.

Cellular AutomataInput Images Desired Output

Figure 42: Example of Training Images used in Experiments by Sahota [123].

The desired behavior can be seen to be binary edge detection. In [124], Sahota

extended the system to include multiple CA layers between input and output. He

found that this was of benefit to more difficult problems where noise was introduced.

In the next few sections, an FPGA based experiment is implemented that is similar to

Sahota's work. This experiment is a demonstration of principle. It is also motivated by

the potential of significant speed-up compared to software for CA experiments.

Additionally, two CA chromosome representations are investigated: One is inspired

by evolvable hardware where EA have been applied directly to the FPGA bit-stream.

80

The second introduces greater constraints on the search space and is representative of

the approach taken in subsequent chapters.

4.2.1 The hybrid XC6216 Cellular Automata

FPGAs can be used to efficiently implement maximally parallel CA if the model is

small enough. One of the simplest CA models has 5 neighbors (the cell itself, and

neighbors above, below, left and right) and 2 states. To implement this CA, each cell

must be able to implement any logic function of 5 variables. This can be achieved

with a look up table, or alternatively with a logic tree illustrated in Figure 43.

1

2

1 1 1 1 1 1 1

2 2 2

3 3

4

5Multiplexer

Logic Function

Figure 43: CA Logic Tree

This logic tree can be implemented in a 4 by 4 group of XC6216 logic blocks. This is

illustrated in Figure 44. Solid arrows illustrate the logic block outputs, which

implement the logic-tree structure. The CA cell state is stored in logic block 5. This

logic block output is routed back throughout the 4 by 4 group and to all north, south,

east and west faces of the cell. Dashed arrows illustrate its path through the local

routing resources.

81

1

3

21

2

1 1

41

3

12

1 2 5

1

Figure 44: Implementation of Logic Tree in 4by4 group of XC6216 logic blocks

State information from a CA cell's north, south, east and west neighbors are routed

across all logic blocks through the XC6216 length 4 interconnects. This means that

every logic block has access to all 5 Boolean state variables. The 4 by 4 group of

Figure 44 is replicated across the XC6216 to form a 15 by 15 two-dimensional

Cellular Automata. This is illustrated in Figure 45. The North/South and East/West

ends of the array are wrapped around via the XC6216 chip length routing resources.

Codd in [125] proved that a 2-state 5 neighbor CA capable of universal computation

did not exist with a finite initial configuration. Several authors achieved computation-

universal CA models by adding more states or larger neighborhoods [126]. In this

experiment, the 2-state 5-neighbor CA is extended by including the memory resources

(flip-flops) that are available in each XC6216 logic block. This leads to a CA model

based on neighborhood information from further back in time. With this extension, it

is possible to demonstrate the computation universality of this hybrid XC6216 CA

model by simulating Minsky's two-register machine [126].

82

1 Cell = 4by4 Group of XC6216 Logic Blocks

15 Cells Accross

15
 C

el
ls

 A
cc

ro
ss

Figure 45: Tiling CA cells across the XC6216 FPGA

4.1.1 Host Program

At the start of the evolutionary experiment, the host program configures a

Generalized Chromosome that remains constant throughout the EA run. In this case

the Generalized Chromosome corresponds to predefined routing between 4by4 groups

that implements the 15 by 15 array of Figure 45. During evolution, partial

reconfiguration is used to configure the precise functionality of logic gates and

multiplexers of Figure 43. All cells in the array can be configured using Partial

Reconfiguration at the same time. This is possible due to a feature known as Wildcard

Registers [85] that are implemented in the XC6216. These registers allow the

configuration address space of the XC6216 to be written in multiple locations with

one memory access. Note, this feature can only be effectively used if the design is

homogenous across the XC6216 device. This is the case with maximally parallel

implementations of CA.

Due to the limited size of the array, each chromosome in the experiment to come is

applied to a number of training images, so that its fitness can be determined

accurately. The main genetic algorithm loop and genetic operators are implemented

83

on the host processor. The host/CC communication for evaluating a chromosome is

illustrated in Figure 46.

Writes Training Image

Configures Chromosome

Reads Result Image

HOST

CC

Configures routing
for 15by15 arrayAt Start of EA Experiment

HOST

CC

 During Evolution
for each chromosome

Steps CA (iterations)

Multiple Evaluations

Figure 46: Host/CC Communication Required for Chromosome Evaluation

4.1.2 Representation and Schedule

When cellular automata are evolved in software, the chromosomes are usually fixed

size rule tables. An example of a chromosome would be the right column of Figure

41. The hybrid XC6216 CA suggests alternative representations that are easier to

implement, and may also lead to smaller, more relevant search spaces for particular

problems.

Figure 47: a) XC6216 Function Unit b) Configuration bytes

The function unit in each XC6216 logic block is illustrated in Figure 47a, and is

defined by three eight bit configuration bytes shown in Figure 47b. In the first two

configuration bytes, CS defines whether or not the function unit will make use of the

84

flip-flop resource. The X1, X2 and X3 configuration bits define the input signals to

the logic gate or multiplexer. Y2 and Y3 define the functionality of the gate or

multiplexer. RP sets the flip-flop as read-only and M defines additional routing

resources.

Configuration byte 3, illustrated in Figure 47b, controls the local multiplexers to

neighboring blocks. This essentially dictates the connectivity between logic blocks,

and therefore the potential inputs to the function unit. This can be more easily

understood by referring to Section 2.3.1.1 in the Literature Review. A more detailed

description of the configuration bytes can also be found in [85]. Two different

hardware representations are investigated:

FPGA Bit-string: The first, inspired by EHW, is based on configuration bytes for the

4 by 4 group of function blocks that make up a cell. The connectivity between each 4

by 4 group is pre-defined by the Generalized Chromosome that implements the 15 by

15 array. All routing and functionality within the 4by4 group is included in the

representation which is completely specified by the 3 configuration bytes / logic

block. The chromosome length for the FPGA Bit-string representation is therefore 48

bytes (4 by 4 group by 3 bytes) or 384 bits.

Logic Tree: The second representation is based on the logic tree of Figure 43. In this

case the routing resources within each 4 by 4 group of function blocks is pre-defined

by fixing the 3rd configuration byte of Figure 47b. This means the 3rd configuration

byte is included in the Generalized Chromosome. It maintains the logic tree structure

between chromosomes and only the functions and multiplexers at each node are

allowed to evolve. A CA chromosome is therefore specified by 2 configuration bytes /

logic block. The effective chromosome for the Logic Tree GA is therefore 32 bytes or

256 bits.

4.1.3 Experiment

A performance comparison of the FPGA Bit-string and Logic Tree hardware

representations, as well as a software based CA rule table representation is made. A

Genetic Algorithm with Elitism described in Section 2.2 of the Literature Review is

used. The reproductive schedule is summarized in Table 4.

85

EA Parameter Number

Population Size 300

Parents 100

Number of Generations 100

Reproduction

Elite 100

Crossover and Mutation (parents: 80 %) 200

Table 4: EA Schedule for Cellular Automata Experiments

Crossover

• For the FPGA Bit-string representation, a one-point crossover is applied to the

384-bit configuration bit string.

• For the Logic Tree representation a genetic programming type crossover that

constrains the structure of CA offspring to the logic tree of Figure 43a is used.

A crossover node is randomly selected and the corresponding sub-trees are

swapped between parent chromosomes.

Mutation

• In both cases, the crossover offspring are mutated in up to 4 randomly chosen

positions.

Figure 48: a) Horizontal and b) Vertically Segmented Training Images

86

The XC6216 CA is applied to a binary texture classification problem, which involves

identifying a particular pattern within the 15 by 15 pixel area. The binary pattern used

in the experiment is diagonal lines. Two screenshots of the CA Evolver host program,

each with training image on the left and desired output on the right, are depicted in

Figure 48. Each training image is divided either horizontally as in Figure 48a, or

vertically shown in Figure 48b. The non-patterned segment is filled with random

pixels, of a density randomly chosen from a uniform distribution between 0 and 1.

The state of each CA cell is initialized with the corresponding point in the 15-by-15

training image. The XC6216 is then clocked for 200 cycles at 33Mhz. This

corresponds to 200 iterations of the CA array. The fitness of the CA individual is

calculated by a bit by bit comparison of the state of CA cells, after 200 iterations and

the desired output. A fitness counter is incremented for each CA cell in

correspondence with the ideal image. While the counter is greater than zero it is also

decremented for each cell that is not in correspondence. As in [123], CA individuals

that lead to a collapsed image (the state of the CA array ends up all 1's or all 0's) are

penalized and receive a fitness score of 0.

Each chromosome within the population is applied to 300 training images for each

evaluation. The overall fitness for a chromosome is calculated as the root mean square

over the 300 images. The elite chromosomes are re-evaluated each generation to

ensure they do not exploit bias that may exist within a given 300 images. Due to the

large number of training images that each chromosome is exposed to, testing

chromosomes on additional images to estimate generalization performance was not

considered necessary.

4.1.4 Results and Discussion

A software-based experiment was also implemented to compare execution times and

estimate speed-up. The chromosome in this case was the more typical 5-input, 2 state,

look-up-table. The computation time for the Evolutionary Algorithm can be

decomposed according to Equation 10.

Ttotal = Tinit + Generations * (Tfit + Tga) (10)

87

Tinit is the time to generate a population and training images. Tfit is the time to evaluate

the fitness of the population and Tga is the time to apply genetic operators between

generations.

Measurement in

Seconds

Software

Rule Table

FPGA

Bit-string

Logic Tree Relative

Speedup

Tinit 0.1 0.1 0.1 1

Tfit per Generation 1987.9 34.22 34.17 58

Tga per Generation 0.05 0.06 0.08 1

Table 5: Estimation of Speedup

Table 5 summarizes the execution times for the various components. A speed-up of

58 was obtained compared to the software implementation on a Pentium II

microprocessor running at 233MHz. More significant performance gains would be

possible if a larger FPGA device was used. Xilinx offers a XC6264 FPGA that has

approximately 4 times as many resources as the XC6216 used in this experiment. This

would enable a 30 by 30 CA maximally parallel CA to be implemented. Execution

times could be expected to be slightly more than those reported in Table 5, since array

initialization and result reading would be more expensive.

A qualitative comparison of the two FPGA based representations, FPGA Bit-string

and Logic Tree, as well as the software based rule table representation was made. For

each experiment, the GA had 100 generations in which to find a CA to correctly

classify the diagonal line pattern. Figure 49 illustrates the average pixel error (number

of pixels misclassified) as a function of GA time (generations).

88

Quality Comparison

0

20

40

60

80

100

120

140

160
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Generations

A
ve

ra
g

e
P

ix
el

E
rr

o
r

FPGA LOGIC SOFT

Figure 49: Comparison of GA performance for 3 representations

It is observed that both FPGA representations appear to have converged faster than

the software rule table representation, and it is possible that further evolution would

lead to lower pixel error solutions for the software rule table representation. However,

a more important observation to this thesis is the fact that the Logic Tree

representation outperformed the FPGA Bit-string representation in all experiments. It

is hypothesized that constraining connectivity and evolving only function avoids

strange feedback loop/analog circuit behaviors and allows a more detailed exploration

of a smaller, more relevant search space.

4.1.5 Problem Specific Constraints

In several runs, individuals of note appeared that performed well for images

segmented in one direction (eg. vertically) but poorly in the other direction. To

encourage the EA to find solutions that performed well in both directions, the Logic

Tree search space was further constrained. The multiplexer selector of node 4 in

Figure 43 was pre-defined to take input from the cell's current state. This reduces the

size of the non-symmetric rule space available to the EA and is illustrated in Figure

50.

Also, due to the close spatial relationship between training and desired output images,

two nodes of type 1 (one in each half of the logic tree) were also pre-defined to store

89

the initial training image. This means the initial configuration of the array is available

even after many CA iterations. This is also illustrated in Figure 50. The best of run

CA from these experiments had an average pixel error of 40 pixels, lower than any

other CA found.

2

1 1 1 1 1 1

2 2 2

3 3

4

5
Cell State

I.C. I.C.
Initial
Condition

Figure 50: Introducing Problem Specific Constraints

4.1.6 Summary

By constraining connectivity within each CA cell, the Logic Tree representation

usually produced better solutions than the FPGA bit-string representation. Problem

specific constraints could also be implemented more easily with the Logic Tree

representation than with the conventional software rule table representation (although

such constraints are certainly possible). This can be attributed to the 'program like'

nature of the Logic Tree representation. While the rule table representation abstracts

the internal workings of the CA algorithm, the Logic Tree allows fine grain

decomposition of CA. Therefore, there is greater visibility into the CA's algorithmic

components, and constraints are more easily implemented.

90

4.2 Evolving Stack Filters

To use cellular automata (CA) for gray-valued image processing is a difficult problem

since rule-table size grows exponentially with the number of states. In this section a

novel alterative using Stack Filters [9] is investigated. Stack filters are closely related

to cellular automata. In the binary case, stack filters represent a subset of cellular

automata rule spaces known as Positive Boolean Functions (PBF). Properties for

which they are named, threshold decomposition and stacking, allow stack filters to be

applied to gray-valued images with little increase in hardware complexity.

Stack filters have been used widely in image and signal enhancement, however they

have not been previously applied to feature classification. Experiments in this section

investigate the feasibility of using stack filters for a texture classification problem.

The potential of this approach lies in extremely efficient implementation of gray-

valued cellular arrays. However, since CC design time is significantly greater than

software, the experiments of this section were carried out in software.

4.2.1 Introduction to Stack Filters

Stack Filters are a class of non-linear filter that include the median filter as well as

many of the fundamental morphological filters such as erosion, dilation. These filters

are usually applied as a spatial filter and are known to be well suited to hardware

implementation. This is due to threshold decomposition and stacking properties,

which allow gray-valued images to be processed with bit-level hardware [127]. This

property is illustrated in Figure 51 for the median filter.

2 2 0 1 1 3 2 2 2 Median
 Filter

2 2 1 1 1 2 2 2 2

Threshold at 1,2 and 3

0 0 0 0 0 1 0 0 0

1 1 0 1 1 1 1 1 1

1 1 0 0 0 1 1 1 1

PBF

PBF

PBF

0 0 0 0 0 0 0 0 0

1 1 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 1

Add binary outputs

Figure 51: Threshold Decomposition of Median Filter

91

A stack filter is uniquely defined by a positive boolean function of its inputs. Positive

Boolean Functions (PBFs) are a subset of Boolean logic functions in which no input

may be negated. The PBF is applied to each level of the threshold decomposed input,

and the output levels are then summed (made possible by the stacking property) to

produce a gray-valued output.

While efficient hardware implementation is the primary motivation, there are several

reasons why stack filter architectures may have properties desirable to texture

classification problems. Stack filters are generalizations of the median filter, which

has excellent noise removal properties. Also, an essential requirement of a good

texture classification algorithm is insensitivity to image illumination. The stack filter

operates on relative, order statistical information and is therefore is not affected by

differences in image illumination. Stack filters are also closely tied to Mathematical

Morphology [14]. By evolving the shape of a stack filters neighborhood, structural

information can be extracted which is a useful way to characterize texture.

Stack Filter Implementation

When implementing maximally parallel cellular arrays, only extremely simple pixel

processors allow sufficient densities of cells for practical applications. Binary cellular

automata are an excellent example of simple pixel processors. The stack filter

architecture in Figure 51 at first appears to have complexity proportional to the

number of levels in the input signal. This illustration of stack filters, although useful

for understanding the threshold decomposition process, is not what is usually

implemented and extremely efficient mechanisms have been proposed [128].

Most useful to maximally parallel implementations is a bit-serial implementation of

stack filters [127]. This has very similar hardware complexity to binary cellular

automata. Threshold decomposition is a function of time and gray-valued image

processing can be implemented with binary components. The bit-serial

implementation is described and used in Everything on the Chip [115] in Appendix B.

92

4.2.2 Thresholding Stack Filters and Fitness Evaluation

When applying stack filters to classification problems, it is important to realize that

the stack filter output will always be one of the neighborhood samples. This means

that if the feature of interest lies in a mid-valued range compared to the input signal

dynamic range, the stack filter output over the feature of interest will not be linearly

separable from non-feature. At the very least a banded threshold is required in order

to separate the data. Two alternative ways of thresholding were explored.

The first approach is inspired by the associative memory nature of stack filters

described in [129]. With this approach an 'invariance threshold' is applied before

calculating a distance measure. The threshold is high if the stack filter is invariant

over an input sample and low otherwise. By minimizing the distance between this

thresholded output and the target classification, a stack filter is evolved whose

invariant signal set exists more in the true samples than in false samples. This

threshold can be implemented very easily in hardware and is illustrated on the left of

Figure 52.

Figure 52: Thresholding strategies applied to stack filters.

The second approach is inspired by the 'generalized median' interpretation of stack

filters. The stack filter output is thresholded by a neighborhood median. For a given

input size there is partial ordering of stack filters that was described in detail in [130].

93

What has not been explored is the ordering of stack filter outputs from filters using

different sized neighborhoods. In this experiment, the ordering required is defined

(the output of the stack filter must be equal or higher to the median over the feature of

interest, and less than the median for non-feature) and the EA is used to search for

stack filters that satisfy this criteria. Figure 52b illustrates the 'median threshold'

described. Note, that by thresholding with a median the hardware requirements are

effectively doubled.

Iterative application of stack filters has been used to improve performance and several

researchers have investigated stack filter convergence behavior. Some classes of stack

filters have been shown to possess the convergence property and upper bounds for

convergence times have been derived. Other classes of stack filters do not possess the

convergence property and have been shown to produce oscillatory outputs [131]. As

illustrated in Figure 52 both stack filter and median, are applied N times before

thresholding occurs. Several different values of N were investigated.

Target classifications are provided with the training data in the form of binary masks,

which define both feature (true) and non-feature (false) for each texture class. The

fitness of a classification algorithm can be calculated with a distance measure

(typically Euclidean or Manhattan) between the algorithm output and the binary mask.

The distance measure used is a weighted hamming distance. True and false classes

contribute equally to the score, which is defined in Equation 11. Tc and Fc represent

the number of true and false pixels correctly classified and TT and TF are the total

number of true and false pixels respectively. A perfect classification will result in a

score of 1000. Further discussion of this fitness metric can be found in Chapter 5.

500*500* 




+





=

T

C

T

C
F

F
T

TFitness (11)

4.2.3 Representation and Schedule

A fairly large stack filter neighborhood was chosen. The stack filter inputs are

selected from a 7 by 7 square neighborhood, which means the stack filter can have up

to 49 distinct inputs. EA have been used to find optimal stack filters by a number of

authors. A commonly used representation was suggested by Chu in [63]. This

94

representation encodes the entire space of PBFs up to a given input size. It is

impractical to use Chu's representation due to the size of the stack filters considered.

To reduce computation times the maximum number of minterms is restricted to 10

and the EA optimizes a set of 10 or less minterms for solving the problem. To

implement this a fixed length string representation was used. A chromosome is made

up of ten genes. Each gene defines a particular minterm through a bit-string, in our

case 49 bits long. A NOP gene is included to include stack filters with less than 10

minterms, e.g.

[Gene 1] MinTerm[0101000001010101000101010110011000001001011000001]

[Gene 2] MinTerm[1000000010010001010101000001100100001100000010000]

[Gene 3] NOP[]

[Gene 4] MinTerm[1000000010010001010101000001100100001100000010000]

[to] .

[Gene 9] NOP[]

[Gene 10] MinTerm[0100000000000000000000011000000000000011100000001]

This representation reduces the search space significantly to approximately 10*249+1,

however this representation does contain redundancy and the precise number of

unique stack filters that this corresponds to is difficult to determine.

The representation does not enforce rotationally invariant stack filters. Morphological

algorithms have achieved rotational invariance with non-isotropic structuring

elements by using multiple, rotated versions of the structuring element. It is believed a

similar approach can be used for the stack filter by adding additional, rotated min-

terms.

The schedule for the EA is summarized in Table 6. Single point crossover was used.

There are 9 valid crossover points corresponding to gene boundaries in the 10-gene

chromosome. Bit-flip mutations are applied randomly to the 10-gene chromosome. A

single application of the mutation operator can result in 1, 2 or 3 (randomly chosen)

bits of the chromosome being flipped.

95

EA Parameter Number

Population Size 500

Parents 80

Number of Generations 1000

Reproduction

Elite 20

Mutated Elite 50

Crossover (parents chosen from top 60%) 250

Mutation (parents chosen from top 60%) 100

Random Generation 80

Table 6: EA Reproductive Schedule for Stack Filter Experiments

4.2.4 Experiment

Figure 53 depicts the training image and test images used. They were developed and

used in [30]. Each texture has equal mean and variance and the boundary between

textures is varied. To reduce EA execution times only a smaller sub-image, boxed in

the training image of Figure 53 is used for calculating fitness. The training image

contains four different textures. Examples of the binary truth masks are also

illustrated in Figure 53 for clarity. Note, that a false or non-feature mask for each

texture (not illustrated) is also defined so that only pixels defined as true or false

contribute to the fitness and remaining pixels are treated as don't-care or unknown.

Two sets of stack filters, using the two different thresholding strategies described, are

evolved. For each set, there are 12 stack filters optimized: a stack filter for each

texture class at three different values of N (the number of iterations). Computation

time restricted our choice of N to 1, 6 and 12. Note, these values do not guarantee

convergence (or oscillation) although for N = 12, propagation of neighborhood

samples can almost span a texture class.

96

Figure 53: Training and Test Images

4.2.5 Results and Discussion

Table 7 reports the best fitness scores obtained by stack filters optimized using the

different criteria. The fitness scores should only be used as a guide to the relative

performance of the various techniques. Only a small training image was used (the

smaller box in Figure 53) and therefore quantitative comparison using this Table can

be misleading. By applying the optimized stack filters to the larger images in Figure

53 a more objective comparison can be made. The scores obtained on the larger

images are presented graphically in Figure 54.

97

Texture Class Invariant

N=1

Invariant

N = 6

Invariant

N = 12

Median

N=1

Median

N=6

Median

N=12

Fitness out of 1000

1 Top Left 635 701 670 804 906 945

2 Top Right 552 574 609 607 853 886

3 Bottom Left 617 651 595 703 909 916

4 Bottom Right 581 588 591 601 808 892

Table 7: Results on Training Images (Small training images)

500

550

600

650

700

750

800

850

900

Texture 1 Texture 2 Texture 3 Texture 4

Problem

F
it

n
es

s

Invariant N=1 Invariant N=6 Invariant N=12

Median N=1 Median N=6 Median N=12

Figure 54: Results when filters are applied to larger images.

The best results on the larger images with the 'invariant threshold' strategy were for

N=6, and these are shown in Figure 55, with the respective fitness scores. Either the

EA was poorly suited to searching the space or more likely, due to the large number

of runs performed, the invariant signal set of most stack filters does not characterize a

texture very well.

Figure 55: Output images from filters trained using Invariant Thresholding for N=6.

Fitness for texture 1 (left) : 659, texture 2 : 541, texture 3 : 550 and texture 4 (right) : 524

98

The performance of the 'median threshold' stack filters was varied. Significant

performance improvement was observed as the number of iterations N, was increased.

This is partly due to the level of smoothing which increases with N. While the N=12

filters achieved the highest scores on the training data, it can be seen by comparing

Figure 56 and Figure 57, that the better result is not easy to discern, particularly for

texture classes 2 and 3. This is a result of using one small training image. For N=12,

stack filters were more dependent on the particular training data supplied since signals

could propagate across the texture class and therefore the N=6 experiment is a better

indicator of performance.

Figure 56: Output images from filters trained using Median Thresholding for N=6.

Fitness for texture 1 (left) : 881, texture 2 : 600, texture 3 : 664 and texture 4 (right) : 673

Figure 57: Output images from filters trained using Median Thresholding for N=12.

Fitness for texture 1 (left) : 898, texture 2 : 568, texture 3 : 664 and texture 4 (right) : 632

The best filters found using the median thresholding scheme with N=6 iterations were

applied to the test images of Figure 53. The images of Figure 58, are in order of

texture. That is, the output from the stack filter trained on texture 1 is on the left,

through to the stack filter trained on texture 4 on the right. Note, filters trained on

textures 1 and 3 were applied to Test Image 1 of Figure 53, and filters trained on

textures 2 and 4 were applied to Test Image 2.

99

Figure 58: Output images from Median N=6 solution applied to test images.

Fitness for texture 1 (left) : 811, texture 2 : 579, texture 3 : 767 and texture 4 (right) : 605

In all cases, texture 1 was classified well but other textures such as 4 were difficult. It

is suggested that the poor performance on texture 4 was due to the large areas of

homogeneous gray-vales within the texture. Since the stack filter is applied as a

shifting window filter it has difficulty producing output over these regions that is

discernable from other homogenous areas such as those found in patterns 2 and 3.

This is a result of the stack filter being based purely on relative information. While

this property of stack filters is useful in terms of illumination insensitivity, a

pathological problem to the stack filter architecture proposed is to classify a particular

feature when supplied with target classification as data!

4.2.6 Summary

The advantage of the architectures considered lies in threshold decomposition and the

stacking property. These lead to efficient hardware implementations, that could be

potentially be implemented within maximally parallel cellular arrays. This experiment

investigated the potential of such architectures for pattern recognition and compared

architectural choices. By evolving stack filter neighborhoods, robust order statistic

relationships within features of interest can be extracted. The limitations of this

architecture were also demonstrated which is a result of level independence within the

threshold decomposition architecture. Extension of these architectures is discussed in

Chapter 5 with respect to Morphological Networks and Generalized Stack Filters.

100

4.3 Chapter Summary

This chapter has described experiments with maximally parallel cellular array

chromosomes. Solution of practical AFE problems with these architectures is difficult

with current FPGA devices, which limit the complexity of pixel processors. Two

experiments, of more theoretical interest were therefore explored. Future chapters,

which attempt to solve more practical problems, implement chromosomes with image

pipelines. However, there are several conclusions from this chapter’s experiments that

are relevant to the rest of the thesis:

Evolving Cellular Automata

• Algorithm structure can be used to dictate a smaller, more relevant search

space compared to the raw FPGA bit-stream.

• Conversely, FPGA resources can lead to algorithmic variants that include the

relevant search space, but can also be implemented efficiently on FPGAs. An

example of this is the hybrid XC6216 CA model.

• Implementing algorithms in hardware can also lead to a fine grain

decomposition of the search space. This is useful for introducing problem

specific constraints.

Evolving Stack Filters

• The flexibility of EA optimization means novel architectures and behavior can

be investigated. Examples of this are the novel thresholding schemes used to

train stack filters: Invariance Thresholding and Median Thresholding.

• Rank order relationships are useful in characterizing images, but the inability

to discriminate differences in absolute gray values (level independence) is

limiting. This problem is addressed in the next chapter with Morphological

Networks.

101

Chapter 5

Evolving Network Architectures

Experiments of this chapter provide the framework, and point of departure for

subsequent chapters that address practical AFE problems in multi-spectral data sets.

Due to the difficulty in extending maximally parallel implementations to practical

problems, chromosomes in this chapter are implemented with image pipelines.

Section 5.1 describes image pipeline fitness evaluation on the Firebird CC in more

detail.

Network architectures have many properties that are desirable in hardware

implementations. They have also been used extensively for classification in AFE

problems. This is particularly true for Neural Networks, introduced in the Literature

Review. A variant of Neural Networks known as Morphological Networks are

introduced. They are of particular interest to this thesis since they can be more

efficiently implemented on FPGAs than Neural Networks and have a strong

relationship to Mathematical Morphology. They also can be considered an extension

of the Stack Filter architectures explored in Chapter 4 that include absolute gray value

information. Both Neural Networks and Morphological Networks are described in

more detail in Section 5.2.

Implementation of these networks using CC is described in Section 5.3. How EA can

be used to optimize networks for particular problems is discussed in Section 5.4.

Sections that follow evaluate and compare Neural and Morphological Network

architectures with practical AFE problems.

102

5.1 Image Pipeline Fitness Evaluation

In this chapter, and in fact the rest of this thesis, chromosomes are implemented with

image pipelines. This section describes the pipeline fitness evaluator that is

implemented on the Firebird CC. Within the context of EA chromosomes, a pipeline

has several advantages over maximally parallel implementations for solving practical

problems:

• More complex algorithms can be implemented: To implement arrays of useful

size, the pixel processor in maximally parallel cellular arrays is resource

limited. In a pipeline, only 1 pixel processor needs to be implemented, and

therefore much more complex processing is possible.

• Flexibility in image size: A pipeline implementation does not require a

particular image size. Larger images simply result in longer execution times.

This flexibility is essential in dealing with variable sized training images and

data sets.

• Localized calculation of Fitness Metric: Calculations based on the entire

image are more easily implemented in the pipeline architecture than

maximally parallel implementations. The output of the pipeline is an image

stream. This can be compared to a target classification stream using a small,

localized fitness metric.

Implementations from this point on use the Firebird CC based around a Virtex 2000E

FPGA. Figure 59 is a schematic diagram of the major components of the pipeline

fitness evaluator using the Firebird CC. The Generalized Chromosome implements

the pipeline to be evolved. It is configured through on-chip configuration registers.

The Generalized Chromosome receives input data from one memory, performs the

particular processing dictated by the configuration registers and then outputs the result

to a second memory.

103

The MemCounter unit of Figure 59 implements a 20-bit counter, which is used to

address both input and output memories. This unit also passes control information to

the Fitness-Metric unit so that fitness is calculated only over valid output data. The

entire design, including Generalized Chromosome and infrastructure, is controlled

through an input control register, which contains a data-count register and a 1-bit

Pipeline-Reset. If the Pipeline-Reset, in the top left of Figure 59, is set high, the

pipeline and counters reset and the host has exclusive access to input and output

memories. When the host sets the Pipeline-Reset low the memories are assigned to the

Generalized Chromosome and the data is piped through the design. The MemCounter

unit stops when it reaches the value stored in the data-count register and sets the

Pipeline-Done output control bit.

Figure 59: Pipeline Fitness Evaluator Architecture

At the same time data is piped through the Generalized Chromosome, the target

classifciation (the true and false training data) is passed to a delay unit. This is called

the twdelay unit in Figure 59. This unit implements a latency equivalent to the

Generalized Chromosome. The latency adjusted truth data is then compared to the

G
en

er
al

iz
ed

C
hr

om
os

om
e

104

Generalized Chromosome output in the Fitness-Metric unit. The fitness is then stored

in the on-chip fitness-register where it is accessed by the host.

The fitness metric implements the weighted hamming distance introduced in Chapter

4. It is repeated in Equation 12.

500*500* 




+





=

T

C

T

C
F

F
T

TFitness (12)

TC is the number of true pixels correctly classified by the network and TT is the total

number of true pixels in the training set. Similarly, FC is the total number of false

pixels correctly classified and FT is the total number of false pixels in the training set.

It is often convienient to represent this fitness score in terms of detection rates and

false alarm rates. The detection rate is the percentage of feature pixels that are

correctly classified as feature. The false alarm rate is the percentage of non-feature

pixels that are incorrectly classified as feature. Equation 13 is another way of

expressing Equation 12, where DR is the detection rate and FA is the false alarm rate.

500*)1(500* FADRFitness −+= (13)

Note, this fitness measure is suitable only for binary or two-class classification

problems. Secondly, only classification error is considered. No measure is made of

the certainty in decision such as a distance from the decision boundary. The benefit of

the weighted hamming metric is its simplicity of implementation in CC.

5.1.1 Host Program

The host program is responsible for implementing the evolutionary algorithm, writing

and reading local memories on the CC as well as pipeline control. Figure 60 depicts

the major components of the host program. Bold psuedo-code indicates where in the

host program the major tasks are carried out.

At the top-level, the host program is primarily responsible for getting data to and from

the CC local memories. At the start of the EA run, the host program writes training

105

data to the Input Memory. At the end of the run, output images are read from the

Output Memory. The top-level object also instantiates a Population object and

controls the number of evolutionary iterations or generations.

Population {
var

Chromosome[1]
Chromosome[2]
Chromosome[3]

.

.

.
Chromosome[n]

methods
Evaluate
Reproduce

}

Chromosome {
var

fitness
Network

methods
Evaluate
Mutate
Crossover

}

Firebird Interface {
methods

WriteReg
ReadReg
WriteMem
ReadMem

}

HOST PROGRAM MAIN()
File IO
for # of generations

Population.Evaluate
Population.Reproduce

endfor

Network {
var
 representation
methods
 Evaluate
 Mutate
 Crossover
 }

Figure 60: Overview of Host Program

The Population object instantiates a population of Chromosome objects, each

representing a candidate solution. The Population object implements the genetic

selection and reproduction algorithms.

The Chromosome object does not explicitly contain the chromosome for a particular

candidate solution. Instead, the Chromosome objects instantiate another problem

specific object, which contains the actual chromosome. In this chapter we are

interested in evolving the network architectures and therefore Figure 60 includes the

additional Network object. The primary role of the Chromosome object is to

instantiate and evaluate a particular Network on CC. To do this, the Chromosome

object requests the hardware configuration registers from the Network object. It then

writes this information to the Generalized Chromosome configuration registers. The

Chromosome object is also responsible for initiating the pipeline and retrieving the

fitness score.

106

The Network object contains the problem specific representation and is primary role is

to implement genetic operators such as crossover and mutation. The representation

used to apply genetic operators is often significantly different from the corresponding

hardware configuration registers. This is discussed more in Section 5.4. The Network

object is therefore required to translate the internal representation to the relevant

hardware configuration so it can be configured on the CC by the Chromosome object.

5.2 Network Architectures

Network architectures consist of a pipelined array of individual nodes. Network

architectures have several properties that lead to efficient hardware implementation.

These include:

• Inherent Parallel Processing: The final output of a network is a result of partial

calculations performed by each node.

• Simple Processing Elements: Each node of the network need only be capable

of solving part of a particular problem and therefore are relatively simple

• Modular: Nodes are usually homogeneous across the network leading to

simple large-scale designs.

For these reasons, networks appear to be a good starting point from which to develop

hardware efficient Generalized Chromosomes for AFE problems. This is not a new

thing, and is partly why Neural Networks have received considerable attention for

solving the classification aspect of AFE problems. They have also been applied to

multi-spectral classification by several authors [114], [132].

Neural Networks have been implemented on FPGAs by several researchers to

accelerate both training and application of particular networks. A fundamental

operation in neural networks is multiplication. This can be expensive to implement on

FPGAs as the number of nodes and connectivity within the network grows. Several

techniques have been used to reduce this problem: implementation of partially

connected neural networks [133], and time multiplexing of network nodes using

partial reconfiguration [134]. FPGA implementations can provide significant speed-

107

up compared to software implementations, and have the advantage of flexibility,

which is of benefit to many applications. However, for other applications FPGAs

cannot provide sufficient densities of neurons and ASIC implementations, often

analogue, are the preferred solution.

Morphological Networks have much in common with Neural Networks but represent

a fundamentally different approach. They have been shown to have equivalent

classification power to neural networks [135] and can be implemented on FPGAs

much more efficiently than traditional neural networks.

Traditional neural networks, using linear perceptrons, involve multiplication of inputs

by weights, and then summing the results. This linear operation is then followed by a

non-linear thresholding operation to produce the perceptron output. This is illustrated

in Figure 61a. In the morphological case, the operations of multiplication and addition

are replaced by addition and maximum / minimum respectively. The morphological

perceptron is illustrated in Figure 61b.

Figure 61: a) Linear Perceptron and b) Morphological Perceptron

The definition of the morphological perceptron presented comes from work presented

in [136]. A multiplicative weight of ±1 is also associated with each input, which is

described as an excitory / inhibitory weight.

Several other researchers have suggested morphological networks but in other forms.

Morphological Networks presented in [137] use morphological maximum and

minimums to replace the linear perceptron addition, but use multiplicative weights on

the inputs. Min-Max classifiers in [138] are similar in principle to Figure 61b, but

were only considered for the binary case and additive input weights were not used.

*W1

*W2

*W3

Input1

Input2

Input3

∑

+W3

+W2

+W1
Input1

Input2

Input3

Max±

±

±

108

5.2.1 Learning Algorithms

Before describing how EA is used to optimize network architectures, it is worth

considering how more traditional learning algorithms can be implemented. The

classification power of morphological networks was investigated in [135]. A learning

algorithm was presented that could find arbitrary decision surfaces with a 2-layer

network.

F1

F2

{1*(F1+w1), 1*(F2+w2)}

w1

w2

F1

F2

{-1*(F1+w3), -1*(F2+w4)}

w4

w3 F1

F2

{-1*(F1+w3), -1*(F2+w4)} {-1*(F1+w3), -1*(F2+w4)}

Figure 62: Morphological Perceptron and Feature Space

This learning algorithm is most easily understood by looking at decision surfaces

formed by morphological perceptrons in feature space. The two illustrations on the

left in Figure 62 illustrate these decision surfaces. The perceptron is defined as the

maximum of the set of weighted inputs. After thresholding at 0, this divides the

feature space into two regions. It also leads to a decision surface that is parallel to the

feature space axis. Note that output from two perceptrons can be combined with a

minimum (a two-layer network) to form a box. This is illustrated on the right of

Figure 62.

The learning algorithm proposed by Sussner [135], is an iterative algorithm consisting

of two steps. Pseudo-code for this algorithm is shown in Figure 63. With enough

nodes, this algorithm can find a 2-layer morphological network to form arbitrary

decision surfaces.

109

 Begin with an empty classifier : all points classified as FALSE.

Find a new box
Find largest box that includes all the TRUE points not yet classified
Shrink box until no FALSE points are included in the box.
Choose box half way between closest TRUE and FALSE points

Update classifier : add box to classifier

Classify points in new box as TRUE

Figure 63: Learning Algorithm Pseudo-code

This learning algorithm was implemented and its application to feature space

illustrated in Figure 64. On the left of Figure 64 is the training data where gray points

represent true and black points represent false for a two-class problem. In the result

image, on the right of Figure 64, the black region corresponds to points the

morphological network classifies as true.

Figure 64: Morphological Networks Applied to Feature Space (a) Training Data (b) Result

The learning algorithm presented in [135] is capable of finding a solution to arbitrary

two-class problems. However, the number of nodes required depends on the problem,

and in worst case, may be equal to the number of training points. To find learning

110

algorithms that can optimize a finite number of nodes, and accept classification error

is a more difficult problem.

A similar problem is faced in the field of neural networks. Back Propagation can be

applied to fixed sized networks, but is often caught in local minima. Also, Back

Propagation type learning algorithms require the neural network activation function to

be differentiable. It is therefore common in Neural Networks to use Sigmoid

activation functions. These can also be expensive to implement on FPGAs.

When EA is used to optimize a neural network the differentiable activation function is

no longer required, and a hard threshold at zero can be used. This threshold is easily

implemented on FPGAs. An interesting application of EA to this problem was

reported in [139]. This work describes using Genetic Programming to discover

learning algorithms for neural networks with step activation functions, rather than

optimizing weights directly.

5.3 Implementation

This section describes implementation of morphological and neural networks in CC.

The circuits to be described are implemented within the Generalized Chromosome

component of the pipeline fitness evaluator architecture described in Section 5.1. The

hardware resources required to implement a Morphological and Neural Network of

similar size are compared in Section 5.3.4.

5.3.1 The Morphological Perceptron

Morphological Networks (MN) are of particular interest since multiplication is

avoided. Figure 65 illustrates the input weight circuit for the MN. A 9-bit 2's

complement adder is used to sum an 8-bit signed input value with an 8-bit signed

weight. The final output of the morphological perceptron is a thresholded Minimum,

or Maximum, of the weighted inputs. Therefore, only the MSB of the adder output is

required in subsequent processing. This bit indicates whether the weighted input is

above or below the threshold. The MSB is conditionally inverted using a 2-input LUT

(look-up-table) according to the ±1 multiplicative weight associated with the input.

111

The register (FDRE) is used to pipeline the network so that high clock frequencies can

be maintained.

Figure 65: Morphological Weight Circuit

A 12 input perceptron was implemented and therefore 12 weight circuits are used.

Since output from the Morphological weight circuit is binary, only 6 4-input LUTs are

required to produce the perceptron output. These LUTs each take a control line that

dictates whether they implement a maximum (OR) or minimum (AND) of the 12

inputs.

5.3.2 The Linear Perceptron

In contrast, Figure 66 illustrates the input weight circuit for the multiplicative neural

network. A pipelined multiplier is used (Mult3by8 and compl units) which is

comparable in size to 4 9-bit adders. In the linear perceptron, the output of each

weight circuit must be summed with other weighted inputs before thresholding can

occur. To maintain full precision the input weight circuit needs to output a 12-bit

result. The 12 weight circuit outputs are then combined with a binary tree of adders

and produce a 16-bit result. The 16-bit result is then thresholded at 0 to produce the

perceptrons single bit output.

Figure 66: Neural Network Weight Circuit

112

5.3.3 2-layer Networks

Two-layer networks are built from the morphological and linear perceptrons. Each

network has 12 inputs, 4 hidden layer nodes, and a single output node. This is

depicted in Figure 67 for clarity.

Figure 67: The 24-input, 4-hidden, 1-output network

The circuit used to implement the output node (combine_4terms), is illustrated in

Figure 68. 2 input LUTS are used to invert the inputs from the previous layer

according to ±1 multiplicative weights. These 4 conditionally inverted inputs are then

passed to 4-input LUTs that can be configured to implement either AND or OR. In

this experiment the conditionally inverted perceptron outputs are combined with a

logical AND. This is a common way to combine hyper-planes for neural networks,

and also in morphological networks, where it is considered a minimum of the first

layer maximums.

Figure 68: The AND/OR Output Node

113

5.3.4 Hardware Resource Comparison

Table 8 summarizes the resource requirements for the morphological and neural

network implementations. There is a resource overhead when using the Firebird CC

for memory, clock and PCI bus interface circuits. An 'empty' design is therefore also

implemented so that the relative cost of network architectures is more accurate.

Design
Virtex Logic Block

utilization (slices)

Total

Utilization

(%)

Design

Utilization (%)

Firebird Infrastructure 1935 out of 19200 10 0

Morphological Network 2432 out of 19200 12 2

Neural Network 3470 out of 19200 18 8

Table 8: Resource Usage Comparison

The right column of Table 8 illustrates the efficiency with which the morphological

network can be implemented. The neural network is approximately 4 times larger than

the morphological design. A timing constraint of 66MHz was easily met by the

morphological design with a pipeline latency of 2 clock cycles. These constraints

were also met in the neural network design, however 3 pipeline stages were required

due to the linear perceptron adder network. Even with a 3-stage pipeline, several

iterations of Place and Route were required. This suggests larger neural network

implementations may require additional pipelining and therefore more resources.

5.4 Representation and Schedule

Chromosomes for evolving the networks are made up from the weights associated

with each input. Table 9 summarizes the software Chromosome to which genetic

operators are applied, and the corresponding on-chip configurations registers. In

hardware, the neural network multiplicative weights are 4-bit signed integers

corresponding to the range –7 to 7. This representation was also used in the software

chromosome.

114

Morphological Network Neural Network

Name
Software

Chromosome

Registers

In CC
Name

Software

Chromosome

Registers

In CC

Coef[i] 0 to 7

Offset[i] -32 to 32

Layer-1

Inputs

(ithinput)
Mult[i] -1 or 1

()
][

12

*][
][

iOffset

iMult
iCoef

+
− Mult[i] -7 to 7 -7 to 7

Layer-2

Inputs

(ithinput)

Mult[i] 0 or 1 Inverter Mult[i] 0 or 1 Inverter

Table 9: Chromosome and on-chip registers for Morphological and Neural Networks

In the morphological case, the weights in hardware are 8-bit signed two's complement

integers. To reduce the search space for the morphological network a more complex

software representation was used. At the beginning of the run, the offset values

associated with each input are set to zero. Therefore, only the Mult and Coef

components in Table 9 are used and weights are restricted to powers of two. After a

pre-defined number of generations, the Offset component is then allowed to mutate.

By initially restricting weights to powers of two a broader ranger of network weights

can be evaluated. When the best networks under this criterion have been found, they

can then be fine-tuned through mutation of the Offset component. In the second layer,

the chromosome is equivalent for both morphological and neural networks. This

means the search space size is approximately the same, which is useful for making

comparisons.

A generational EA with elitism is used. The reproductive schedule is summarized in

Table 10. The CC evaluation time was approximately 120 seconds, although optimal

networks were often found much earlier. A comparison to software training times is

not made. This chapter is primarily concerned with the classification accuracy of the

neural and morphological networks. Detailed comparison of CC and software training

times for network architectures is presented in Chapter 7.

115

EA Parameter Number

Population Size 200

Parents 80

Number of Generations 500

Reproduction

Elite 20

Mutated Elite 50

Crossover (parents chosen from top 60%) 250

Mutation (parents chosen from top 60%) 100

Random Generation 80

Table 10: Reproductive schedule for morphological and neural network experiments

A single point crossover is used and was applied at perceptron boundaries. Two

parents are selected, and a random number of perceptrons (1,2 or 3) are swapped.

Mutation is applied in either 1 or 2 randomly chosen weights.

5.5 Experiments with Texture Classification

In this section, the classification accuracy of the morphological and neural network

implementations is compared. The problem is similar to the texture classification task

of the previous chapter. The speed of the CC fitness evaluation means a larger

training image can be used for the texture classification problem, than was possible in

Chapter 4. This larger image can be seen in Figure 69. Four patterns were chosen,

indicated by numbers 1 through 4, and therefore 4 networks of each type

(Morphological and Neural) were optimized.

In this experiment, a more conventional approach is taken and the texture

classification task is decomposed into feature extraction followed by classification.

Feature extraction is performed in software. Twelve features are generated and

downloaded to the Firebird Local Memory. Each image pixel is therefore

characterized by a 12-element vector in feature space. Classification is then carried

out in CC where both morphological and neural networks are applied.

116

The twelve features are generated by calculating a pattern spectrum [34]. This was

described in detail in the Literature Review. In short, morphological opening and

closing is applied to the texture image of Figure 69a using successively larger

structuring elements. Figure 69b depicts 6 of the 12 features produced. The left

column shows the pattern spectrum images after opening at 3 scales using a square-

structuring element of size 3,7 and 11. The right column shows the pattern spectrum

images produced from closing using the same sized structuring elements. Note,

images from structuring elements of size 5, 9 and 13 are not shown.

A) B)

Figure 69: A) The Original Image for Texture Classification. 1: Check, 2: Honey Comb, 3:Snake

skin and 4: Rubble. B) 6 of the 12 Pattern Spectrum features. Left column: pattern spectrum

after opening with structuring elements of size 3, 7 and 11. Right column: pattern spectrum after

closing with structuring elements of size 3, 7 and 11.

5.5.1 Results and Discussion

Training data was only supplied for the left half of the texture image in Figure 69.

Both morphological and neural networks were evolved in 5 independent runs for each

texture. The results of these experiments are reported in Table 11. Numbers represent

classification accuracy, calculated using the hamming metric. A perfect classification

results in a score of 1000. The software experiment used the back propagation

algorithm. Multiple runs of the algorithm were used, but were often caught in local

117

optima. The reported results were the best score obtained from the multiple runs.

There are many other neural network learning algorithms that could find global

optima more consistently, however they were not investigated.

Morphological Network Mean SD
Neural Network

Back Propagation
1: Check 950 937 917 945 942 938 12.7 846
2: Honey 969 965 962 968 955 964 5.6 871
3: Snake 846 841 839 837 841 841 3.3 734
4: Rubble 810 793 807 801 813 805 7.9 657

Neural Network
1: Check 976 975 976 975 976 976 0.5
2: Honey 989 988 987 987 986 987 1.1
3: Snake 873 873 877 879 882 877 3.9
4: Rubble 855 847 846 855 858 852 5.4

Table 11: Training Scores for Morphological and Neural Networks

The optimized networks of Table 11 were then applied to the right side of Figure 69,

and fitness scores calculated to measure out-of-sample performance. The test scores

are summarized in Table 12. It is observed that out-of sample results are very similar

for both morphological and neural network cases with respect to training data scores.

Morphological Network Mean SD
Neural Network

Back Propagation
1: Check 952 956 919 938 958 945 16.3 855
2: Honey 947 939 944 954 932 943 8.3 831
3: Snake 781 770 771 767 775 773 5.4 645
4: Rubble 739 735 736 737 744 738 3.6 623

Neural Network
1: Check 983 979 981 981 980 981 1.5
2: Honey 973 977 977 979 970 975 3.6
3: Snake 782 787 778 796 791 787 7.1
4: Rubble 792 803 787 797 803 796 7.0

Table 12: Test Scores for Morphological and Neural Networks

The output images for both the morphological and neural networks (on the complete

image) are illustrated in Figure 70. In absolute terms, better accuracy has been

reported by researchers dedicated to texture characterization [30]. However, this

experiment is primarily concerned with the relative performance of the network

architectures. Both networks found better solutions to those found in Chapter 4. Also,

the neural network produces a cleaner output image than the morphological network.

This indicates that the neural network is potentially making more useful decision

118

surfaces than the morphological network for this problem. This is explored further by

applying both networks to multi-spectral AFE in the next section.

1. Check 2. Honey Comb 3. Snake skin 4. Rubble

Morphological Network Outputs

Neural Network Output

Figure 70: Output images on Training Data

5.6 Experiments with Multi-Spectral AFE

In multi-spectral data processing, a D element vector in spectral space characterizes

each pixel, where D is the number of spectral channels in the image cube. In most

traditional approaches to multi-spectral image processing classification is applied

directly to this spectral space. In this section, the morphological and neural networks

are applied in this way.

A 10-band multi-spectral data set was used. Two of the twelve inputs associated with

the morphological and neural networks are therefore not used. The training images are

depicted in Figure 71, together with the target classifications. White indicates the

feature of interest, gray indicates non-feature and black corresponds to don't know and

does not contribute to the score. The training data in Figure 71 was generated with a

graphical point and paint program and can appear arbitrary. Regions that are

ambiguous are left as don’t know to avoid providing inconsistent training data.

119

Figure 71: Multi-Spectral Training Set A) Water, B) Golf Courses and C) Urban Areas

The problem set was designed to span a range of difficulties. On the left, the feature

of interest is water. This is the easiest problem of the three since water has a unique

spectral signature. The second problem is to identify the golf courses. It is believed

that this problem is of moderate difficulty but should have distinguishable spectral

properties. The type of grass used in golf courses is often unique and therefore may be

detected with purely spectral information. The third training image specifies urban or

'built-up' areas as the feature of interest. Urban areas can include a wide variety of

materials and therefore spectral signatures. It is believed this is the hardest problem to

be solved with spectral information alone.

Both morphological and neural networks were evolved in 5 independent runs for each

feature. Optimized networks are then applied to test images illustrated in Figure 72.

120

Figure 72: Multi-Spectral Test Set A) Water, B) Golf Courses and C) Urban Areas

5.6.1 Results and Discussion

The results on the training data are reported in Table 13. The optimized networks

were then applied to the test images and results are reported in Table 14. Again,

numbers represent classification accuracy based on the hamming fitness metric and a

perfect classification is 1000.

Figure 73 shows the output images for the best morphological and neural networks

found for each feature of interest. Figure 74 shows the output images from applying

the networks to the test images.

Morphological Network Mean S.D.
Neural Network

Back Propagation
Water 999 999 999 999 999 999 0.0
Golf 955 957 948 958 953 954 3.73

Urban 770 767 767 746 748 759 9.26

Neural Network

Water 999 999 999 999 999 999 0.09 999
Golf 963 960 964 962 962 962 1.65 937

Urban 792 780 791 781 798 788 7.70 756

Table 13: Fitness Scores obtained by Morphological and Neural Networks on training data.

121

Morphological Network Mean S.D.
Neural Network

Back Propagation
Water 807 930 786 787 791 820 61.9
Golf 894 826 885 832 891 857 33.6

Urban 660 657 610 670 643 648 23.3

Neural Network

Water 810 922 889 833 841 859 45.5 864
Golf 933 899 919 853 877 896 32 768

Urban 738 690 692 671 698 698 24.6 683

Table 14: Fitness Scores for Morphological and Neural Networks applied to test images.

Figure 73: Output Images on Training Data

122

Figure 74: Output Images on Test Data

The neural network architecture out performs the morphological architecture in all

problems. Both types of network found the multi-spectral feature identification

problems progressively more difficult as expected. The neural network is seen to

perform better on test images than the morphological network. However, this does

appear consistent with the lower training data scores that were obtained by the

morphological network. It is hypothesized that fine-tuning the Morphological

Network offset values may lead to more brittle solutions, and therefore adversely

affect generalization performance. To test this hypothesis, the Morphological

Network was applied to the data set a second time. In this case, the offset values were

kept at a constant of zero throughout evolution. The performance of the optimized

network is summarized in Table 15 for the training images and Table 16 for the test

images.

Morphological Network Training Mean S.D.
Water 999 999 999 999 999 999 0.0
Golf 948 948 947 948 947 948 0.5

Urban 760 760 750 765 735 754 11.9

Table 15: Training Example Scores for Morphological Network with constant offset values.

123

Morphological Network Testing Mean S.D.
Water 924 924 913 849 914 905 31.6
Golf 922 922 885 922 918 914 16.2

Urban 659 636 619 661 658 647 18.5

Table 16: Training Example Scores for Morphological Network with constant offset values.

By comparing Tables 15 and 16 to the Morphological Network results in Tables 13

and 14, it can be seen that although slightly better scores were achieved by fine-tuning

the offset values, there was significant improvement in generalization by keeping

these values constant. For this reason, offset values are not used in experiments

involving morphological network components that are described in the next 2

chapters. The following conclusions are made:

1. The Neural Network architecture seems to have greater classification power

than the morphological network architecture. However, it should be noted that

the Neural Network used approximately 4 times the number of resources of

the Morphological Network. An interesting direction, which was not

investigated, would be to compare the Neural Network with a Morphological

Network 4 times the size.

2. By confining Morphological Network coefficients to powers of 2, better

generalization performance was observed.

3. Both spectral and spatial information are important in many multi-spectral

feature identification problems of interest.

4. If a network is to be implemented in hardware, evolutionary search is a well-

motivated learning algorithm.

5.7 Further Discussion

In this chapter, the neural network architecture was able to form more useful decision

surfaces than the morphological architecture. In terms of hardware resources, this is

not surprising since the neural network had approximately four times the

computational resources of the morphological network. A topic of future work is to

enhance the classification power of the morphological network. One way of extending

the morphological network is inspired by stack filters, introduced in Chapter 4. Figure

75 highlights the difference in morphological network and stack filter architectures. If

124

additive weights are applied to stack filter inputs, the two architectures appear very

similar. For morphological networks on the right of Figure 75, the output from each

minimum (perceptron) is thesholded. However, if the maxium of the minterms is

found without thresholding, a PBF is formed. This can be seen on the left of Figure

75.

Figure 75: Left: Generalized Stack Filter and Right: Morphological Network

This architecture can be considered a subset of generalized stack filters (GSTFs)

presented in [140]. GSTFs allow the PBF to receive input from more than one level in

the threshold decomposition architecture. They also allow the PBF to vary from one

level to the next and in fact even the logic function does not necessarily need to be a

PBF as long as its satisfies the stacking property. The architecture presented in Figure

75a represents a set of homogenous GSTFs, restricted to PBFs and therefore is

guaranteed to satisfy the stacking requirement. The advantage of filters with the

stacking property is they can be implemented using the threshold decomposition

architecture and therefore very efficiently in hardware. If the PBF is implemented

directly, a variable number of minterms could be implemented using the same

hardware. This may be of used to form more complex decision surfaces, but was not

explored further in this thesis.

125

5.8 Chapter Summary

In this chapter image pipelines were found to have greater flexibility in solving

problems of practical interest. Pipeline chromosomes do not depend on the size of the

training image and the Fitness Metric can be implemented more efficiently than for

maximally parallel chromosomes.

Neural Networks can be implemented efficiently as long as small multipliers can be

used. Larger multipliers can be demanding on FPGA resources and therefore an

alternative known as Morphological Networks was explored. These architectures use

a combination of multi-bit addition, subtraction and multiplexer building blocks,

which can be implemented efficiently on Virtex FPGAs. The novel contributions of

this chapter, relevant to the thesis are:

• Most Neural Network researchers are unfamiliar with the recently introduced

Morphological Network. This chapter has made one of the first objective

comparisons of these architectures for solving practical AFE problems.

Comparisons were made both in terms of the hardware resources required for

implementation as well as the quality of AFE algorithm.

• It was found that spectral information alone is insufficient for solving many

multi-spectral AFE problems of interest. This is particular true for broad area

features such as Urban Areas, where the feature of interest contains many

different spectral signatures.

• The flexibility of EA optimization was again demonstrated. The optimization

of both neural and morphological networks had similar complexity. This

suggests EA can be used to optimize more complex network architectures, or

architectural variants as easily as traditional neural networks.

126

Chapter 6

Evolving Multi-Spectral Networks

Chapter 5 demonstrated how network architectures using multi-bit arithmetic and

small multipliers could be efficiently implemented using image pipelines in CC. The

flexibility of EA suggests similar components could be used to build other types of

networks, which may be better suited to multi-spectral data sets.

This chapter develops exactly that: a novel network node particularly suited to multi-

spectral AFE. In terms of design spaces, the node architecture is driven by a

combination of:

1. Conventional network architectures and FPGA efficient building blocks

described in Chapter 5.

2. Software AFE algorithms discussed in detail in the Literature Review.

This chapter presents a detailed description of the node and design motivations.

Several developmental experiments were used to help make design decisions. For

clarity, these are not reported in this chapter, but interested readers can find examples

of these experiments in Appendix A. This chapter does not include assessment and

comparison of the network node for AFE. These are reported in Chapter 7, when the

node is incorporated in a larger 3-layer network.

Two important roles of AFE in multi-spectral data sets are:

• Modern multi-spectral sensors are now being produced with high spatial

resolution. The IKONOS instrument by NASA, which is used in experiments

latter in the chapter, has 1m-pixel resolution. To exploit these advances in

127

sensor technology automatic feature identification algorithms must utilize

both spectral and spatial information. It is still unclear how these dimensions

can be best combined and therefore a good candidate for AFE.

• Sensors produce an order of magnitude more data. A single scene is often

imaged at 10 to 20 different wavelengths for multi-spectral sensors [141] and

often more than 200 for hyper-spectral sensors. An important part of AFE

algorithms is therefore band selection.

6.1 Spatial Processing in Pipelines

The networks implemented in the previous chapter are an excellent example of

spectral processing. At each clock cycle, the pipeline combined pixel by pixel, 12

independent spectral channels. Spatial processing requires the pipeline to access

multiple pixels from a single channel at the same time. This can be difficult when

pixels are being supplied sequentially, however there are several ways it can be

implemented:

1) Random access memory: If an image channel is associated with on-board memory

it is possible to use more complex address generation, and retrieve pixels as they

are required. This technique requires careful consideration of the processing

pipeline in order to avoid a memory bandwidth bottleneck. Usually pipeline

throughput is decreased.

2) Decomposition of Neighborhood processing: For many operations it is possible to

decompose the neighborhood processing into a series of row and then column

operations. This technique is attractive, however an image must be easily

transposed which is often complicated with raster scan images.

A third approach, which is used in this thesis, is to store some of the image locally

with on-chip memory. This is illustrated in Figure 76, where image-width length shift

registers are used to slide a 3 by 3 neighborhood across the image. Once the row

buffers have been filled (an associated latency), a new neighborhood is formed every

clock cycle. This means the pipeline efficiency is maintained. This technique is

128

expensive in terms of on-chip memory. However, modern FPGA devices such as the

Virtex 2000E used in this chapter have substantial on-chip RAM resources with

which row buffering can be implemented.

Figure 76: Row Buffering for 3 by 3 Neighborhood Generation

6.2 A Multi-Spectral Network Node

Figure 77 illustrates the multi-spectral network node. The node has four inputs (four

multi-spectral bands if applied directly to the data) and one output. The four inputs are

first combined using a spectral processor that produces one output. The output of the

Spectral Processor is then input to a Spatial Processor.

Figure 77: The Multi-Spectral Network Node

129

The Spectral Processor is described in Section 6.3. The Spatial Processor is described

in Section 6.4. The two additional components are used for controlling precision and

are discussed in Section 6.5.

The input to the node is assumed to be 8-bit, 2’s complement integers in the range –

127 to 127. The node is designed to maintain this precision and produce an 8-bit 2’s

complement output. When the node is used for two-class classification problems, the

sign of pixels in the output image dictates what class a pixel is assigned to. Positive

pixels are assigned to one class, and negative pixels the other class. Since finding all

non-feature pixels is equivalent to finding the feature of interest, two fitness scores

need to be calculated: one score for feature pixels being positive and a second score

for feature pixels being negative. The host program retrieves both these scores from

the CC and chooses the best one.

The node is configured through three on-chip configuration registers, CONFIG,

MULT_COEF and SUM_COEF. The configuration registers for the node are

described in Table 17. This table indicates the relative number of configuration bits

from each of the 4 components: Spectral and Spatial processors and two Precision

components. More detailed description of these configuration bits is given as each

component is presented.

Register Name Relative Contribution to 64-bit on-chip Registers

CONFIG Spectral 11 Spatial: 30

MULT_COEF Spectral 16 Precision 5 Spatial 12 Precision: 5

SUM_COEF Spectral 32 Spatial 24

Table 17: Node Configuration Registers

6.3 The Spectral Processor

The role of the spectral processor is to combine four spectral channels into a single

output image. The spectral processor implements a hybrid of the neural and

morphological network nodes of the previous chapter. An example of how two inputs

are combined in the spectral processor is shown in Figure 78.

130

Figure 78: 2-input Combiner

Two coefficients are associated with each image plane and are applied in the Add-

Mult-Coef block in Figure 78. This block implements Equation 16. The sum

coefficients have a range between –127 and 127. The Multiplicative coefficients may

assume values between –7 and 7.

CoefCoef MultSumInputOutput ∗+=)((16)

Once coefficients have been applied, images then pass to the Arith-Morph-Mux

(AMM) unit. This processing block incorporates the fundamental flexibility of both

spectral and spatial processor and is illustrated in Figure 79.

Figure 79: Arith-Morph-Mux (AMM) Unit

131

The AMM unit is based around a programmable add/subtract unit. This is labeled

fas12 (full adder, subtractor: 12 bits) in Figure 79. With the addition of control logic

(implemented in look-up-tables: LUTs) and multiplexers (muxD12), the AMM unit

can be configured to perform several functions of two inputs. A particular function is

configured by setting 3 control lines, Mux, Func and Morph. These control lines can

be seen in the top-left of Figure 79. Table 18 shows the corresponding functions

implemented by the AMM unit.

Control Bits

Mux Func Morph

Function

Applied to pixels p1 and p2

0 0 0 Average (p1 + p2)/2

0 0 1 Difference (p1 - p2)/2

0 1 0 Maximum ∨ {p1, p2}

0 1 1 Minimum ∧ {p1, p2}

1 * 0 Select p1

1 * 1 Select p2

Table 18: Configuring the Arith-Morph-Mux Unit

The frd12 block in Figure 79 is a 12-bit register that introduces pipeline latency. This

is a common design practice in pipelines to maintain high clock rates. Additional

registers can be used to increase clock rates further.

The final component of Figure 79 is the darkened mux2. This component is motivated

by the use of the node within a larger network. In this context, the spectral component

is used to combine a number of outputs from previous layers. An interesting building

block that may be useful to such processing is the IF-THEN-ELSE structure. This

structure is often used in GP implementations [55]. Inputs 1 and 2 of the node are

evaluated according to an IF expression. Examples of an IF expression include less

than, or greater than. THEN and ELSE are implemented through conditional

multiplexing. The output is input 3, if the expression is TRUE, and input 4 if the

expression is FALSE.

This structure is easily incorporated into the node with the additional darkened

multiplexer. This multiplexer has two inputs. The first is the control line, previously

used to select the muxD12 multiplexer. The second, IFSelect corresponds to a similar

132

control line from a second AMM unit. An additional configuration bit associated with

each unit, IFControl, is used to choose which of these control lines is used. The

complete If-Then-Else structure is implemented by coordinated use of two 2-input

Combiners.

Figure 80: If-then-else Communication between 2-input Combiners

Figure 80 illustrates the complete spectral processor. Two 2-input Combiners of

Figure 78 input to a third AMM unit. This is equivalent to a 4 input, 2-layer network.

The circle in Figure 80 highlights the additional communication required to complete

the IF-THEN-ELSE structure. The original IFSelectOut control line in Figure 79 is

passed as an output to a second AMM unit. The second AMM unit provides a similar

control line back. It is therefore possible to implement two IF-THEN-ELSE structures

within the Spectral Processor and hence two IFControl bits are present in the Spectral

Processor chromosome. The complete chromosome for the 4-input Spectral Processor

is shown in Table 19.

CONFIG (0:10)

1st AMM unit 2nd AMM unit 3rd AMM unit

4 bit {Mux, Func, Morph,

IFControl}

4 bit {Mux, Func, Morph,

IFControl}
3 bit {Mux, Func, Morph}

MULT_COEF (0:15)

Input 1 Input 2 Input 3 Input 4

4 bit {Sign, 3 bit INT} 4 bit {Sign, 3 bit INT} 4 bit {Sign, 3 bit INT} 4 bit {Sign, 3 bit INT}

SUM_COEF (0:31)

Input 1 Input 2 Input 3 Input 4

8 bit {2's comp INT} 8 bit {2's comp INT} 8 bit {2's comp INT} 8 bit {2's comp INT}

Table 19: Configuration Bits for Spectral Components

133

6.3.1 Application to Feature Space

The spectral processor can be configured to implement both neural network and

morphological network functionality that was described in Chapter 5. More

importantly, the processor can be configured to be a large number of hybrid-

architectures that may be suitable for different problems. The hybrid

morphological/neural network nature of the spectral component is most easily seen

when it is applied to feature space. Figure 81 illustrates the output from the spectral

component, when applied to 3 different problems.

The first problem represents a linear separable feature space, which is easily solved

with a linear combination used in neural network architectures. The second problem is

an example of the XOR problem [41]. This problem illustrates how the 4 inputs to the

spectral processor are combined hierarchically in a 2-layer network. The problem in

feature space requires only two inputs, corresponding to the X and Y dimensions of a

2-dimensional feature space. In Figure 81b, the result image shows how two linear

combinations are combined to produce the decision boundary. The third problem was

designed to illustrate the morphological aspect of the spectral component. In this case,

the best decision boundary was found by taking a maximum of two minterms.

Figure 81: Results on Feature Space a) Linearly Separable, b) XOR and c) Box problems.

134

6.4 The Spatial Processor

The Spatial Processor is applied to a single input image and implements functions of a

5 by 5 neighborhood. This essentially means that the Spatial Processor takes 25 inputs

and produces 1 output. Image Enhancement and Feature Extraction algorithms

described in the Literature Review motivate how these 25 inputs are combined.

Another major contributor is hardware reuse.

Figure 82 depicts the 5 by 5 register array that stores the neighborhood. The input

image is supplied to the processor through the row0 input. Four row outputs (on the

right of the image) input to row buffers that then supply row1 through row4 inputs.

Each register in Figure 82, represents an input to the neighborhood function.

Figure 82: 5 by5 neighborhood of Spatial Operator

The 25 input pixels are combined with a binary network, of Arith-Morph-Mux

(AMM) units and Arith-Morph-Abs (AMA) units. The AMM units were discussed

with respect to the Spectral Processor. The AMA unit replaces the multiplexing

functionality with an absolute value operation. This is implemented with a conditional

135

complementer, compl, in Figure 83. The modified configuration bits are summarized

in Table 20.

Control Bits

Mux Func Morph

Function

Applied to pixels p1 and p2

1 * 0 Absolute Value of Sum | (p1 + p2)/2 |

1 * 1 Absolute Value of Difference

| (p1 - p2)/2 |

Table 20: Modified Configuration of Arith-Abs-Morph Unit

Figure 83: The Arith-Abs-Morph Unit

At the top level, the 25 inputs are first combined into 3 rings. These are superimposed

on Figure 82. The 5 by 5 ring has 16 inputs and the 3 by 3 ring has 8 inputs. The 3rd

ring is simply the center pixel. These 3 values are combined with a spectral processor

of 3 inputs. There are therefore both multiplicative and additive coefficients

associated with each ring. In this case the IF-THEN-ELSE structure is not included.

136

Figure 84: Order of combination for 5 by 5 ring

The order in which pixels are combined in each ring is important. The order for the 5

by 5 case is illustrated in Figure 84. First, pixels in each corner of the ring are

combined. In the 5 by 5 case, a 4-input network of AMM units is used. In the 3 by 3

ring, there are only 2 pixels associated with a corner and therefore only 1 AMM unit

is required. In both cases, this sub-network can be configured to return the average,

maximum or minimum of any subset of pixels in the corner. The corner averages can

be used to estimate a gradient by combining opposite corners with the AMA unit. In

this case, an absolute value of the difference represents the magnitude of an edge

response. Once opposite corners have been combined, the two diagonals that result

are combined with another AMA unit. This is most clearly seen in Figure 84.

Each ring can return an average, maximum, minimum or edge response. By

associating weights with these rings, a hybrid linear/non-linear spatial filter is

implemented. By setting weights appropriately, Gaussian smoothing and simple

combinations of Gaussian functions can be implemented. The morphological aspect

of the ring combiner can be used to implement, erosion, dilation and morphological

range operations. More detailed description of how the Spatial Processor is configured

for many Enhancement and Feature Extraction algorithms is found in the next section:

Example Configurations.

To encourage rotationally invariant operators, and to reduce the size of the search

space, only one quarter of the tree is configured. The configuration for the top left

quadrant of the tree is used in the other three quadrants. This is a common way of

enforcing rotationally invariant structuring elements when optimizing morphological

137

filters [62]. Figure 85 illustrates the technique. Only the top-left portion of the

neighborhood with gray background is configured. This configuration is then rotated

through the four quadrants. In this example, a particular configuration produces a

filter that depends only on pixels that are crossed. In terms of morphology, the

structuring element that results can be seen on the right of Figure 85.

Figure 85: Encouraging Rotational Invariance

The configuration bits for the Spatial Processor are summarized in Table 21. Once the

3 rings are found, the multiplicative and additive coefficients are applied. The 3 by 3

ring is combined with the center pixel using an AMM unit. This is similar to the

Spectral Processor. This output is then combined with the 5 by 5 ring to produce the

final spatial filter output. Combining the 3 by 3 group with the center pixel before the

5 by 5 group means a flatter spatial convolution can be implemented.

CONFIG (0:29)

3 by 3 Ring 5 by 5 RingMiddle +

5 by 5

Ring

Center +

3 by 3 Ring Ring Diag Corner Ring Diag Corner

AMM AMM AMA AMA AMM AMA AMA AMM AMM AMM

3 bits 3 bits 3 bits 3 bits 3 bits 3bits 3bits 3bits 3bits 3bits

MULT_COEF (0:11)

Center Pixel 3 by 3 Ring 5 by 5 Ring

4 bit {Sign, 3 bit INT} 4 bit {Sign, 3 bit INT} 4 bit {Sign, 3 bit INT}

SUM_COEF (0:23)

Center Pixel 3 by 3 Ring 5 by 5 Ring

8 bit {2's comp INT} 8 bit {2's comp INT} 8 bit {2's comp INT}

Table 21: Configuration Bits for Spatial Processor

138

6.4.1 Example Configurations

This section gives more detailed examples of how the spatial component can be

configured to implement Enhancement and Feature Extraction algorithms. These

examples explain many of the design decisions made in the Spatial Processor. Figure

86A is the original image to which various configurations of the spatial processor

have been applied.

One of the most fundamental image enhancement algorithms, smoothing or low pass

filtering, is illustrated in Figure 86B. In this case all AMM and AAM units are

configured to find the average of their inputs. The hierarchical summation of inputs

towards the center leads to a center bias in the average. This corresponds to a weight

of 8 applied to the center pixel, and a weight of 1 for pixels in both 3 by 3 and 5 by 5

rings.

Figure 86: A) Original Image B) and 5 by 5 Smoothed Image

To achieve a semi-flat average the multiplicative coefficients, which combine the 3

rings, can be used. In the case of Figure 86B, weights of 1, 7 and 5 were applied to the

center, 3 by 3 and 5 by 5 rings respectively to approximate a Gaussian kernel function

described in Section 2.1.1.1 of the Literature Review.

The fundamental Morphological operations, erosion and dilation are also easily

implemented with the Spatial Processor. In this case the AMM and AAM units are

configured as either maximum or minimum. A key to morphological filters is the

shape of the structuring element. In Figure 87, a square-structuring element was used.

By configuring some units as multiplexers a variety of structuring elements are

possible.

139

Figure 87: Morphological Erosion and Dilation

By calculating a difference between the averaged corners of the 3 by 3 or 5 by 5 rings,

the spatial processor can estimate a gradient along the diagonal. This is similar to the

approach used in the Roberts and Sobel gradient operators [6], [7]. To calculate the

magnitude of the edge response, the AAM units are configured to calculate the

absolute value of the difference. By applying this absolute difference operator in two

orthogonal directions (rising and falling diagonals) the total gradient can be estimated

with a Maximum [8]. Figure 88 illustrates the result of this approach using the 3 by 3

and 5 by 5 rings.

Figure 88: 3 by 3 Edge Detection and 5 by 5 Edge Detection

The Spatial Processor can also be configured to approximate the morphological

gradient by calculating the difference between the maximum of the 5 by 5 ring and

the minimum of the 3 by 3 ring. This is depicted in Figure 89a. The dual of this

operator is the difference between the 3 by 3 ring maximum and the 5 by 5 ring

minimum, which is illustrated in Figure 89b.

140

Figure 89: Max-Min Morphological Range and Min-Max Morphological Range

Various texture measures can be implemented with the Spatial Processor. The texture

measures of Figure 90 are similar to the rotationally invariant masks by Laws [25].

These texture measures were described in the Literature Review and implement

combinations of Gaussian functions (spot detectors) and edge masks [26]. By

combining edge responses from one ring with weighted averages of other rings, the

spatial processor can effectively implement these types of texture measures.

Furthermore, the combination of edge response and smoothing can be optimized by

the EA.

Figure 90: Texture Operators

The combination of linear and non-linear filtering can also be optimized in the spatial

processor. For example, generalization of the morphological range leads to linear

combinations of ring order statistics. Figure 91A and B illustrate linear combinations

of erosions and dilations respectively. This is similar to linear combinations of rank

order filters used in L-filters [18] and pseudo-granulomotries described in [38].

141

Figure 91: A) Linear Combinations of Erosions B) Linear Combinations of Dilations

6.5 Nodes in Networks

The multi-spectral processing node of the previous section defines a rich search space

for AFE in multi-spectral data sets. This network node combines traditional

classification components, taken from morphological and neural networks, with well-

developed spatial image enhancement and feature extraction algorithms. In this

section, additional considerations for using the node in a larger network are described.

The reasons why extension to multiple node architectures is desirable:

1. In multi-spectral imagery, it is possible that more than 4 input channels would

be required to solve a problem accurately. The width of the network is defined

by a number of nodes in parallel. Each node has 4 independent inputs and

therefore more multi-spectral channels can be processed.

2. It is likely a single node cannot solve a general set of more complex problems.

The depth of the network is defined by a number of nodes in series. By

applying a number of nodes in succession more complicated algorithms can be

implemented.

Section 6.5.1 describes the Precision component. This was illustrated in Figure 77 at

the start of this chapter, but is yet to be described. Section 6.5.2 then describes how a

channel chooser can be implemented, which allows the network to be applied to

variable size data cubes.

142

6.5.1 The Configurable Precision Unit

It is desirable to maintain a consistent bit-width between node input and output so that

nodes can be easily cascaded to form networks. Input to the node is assumed to be 8-

bit 2's complement numbers. The multiplicative weights, used to combine inputs in

the Spectral Processor, and the center, 3 by 3 and 5 by 5 rings in the Spatial Processor

produce 12-bit outputs at full precision.

One solution is to constrain the output to either the least significant or most significant

8-bits and use the EA to find solutions that can perform well under this constraint.

Since multiplicative weights can be positive or negative, it is possible that coefficients

could be found that produce a final result within the desired dynamic range. An

alternative is to provide a means to dynamically select 8-bits from the 12-bit output

from one chromosome to the next. This is the approach used in this thesis.

Figure 92: The Configurable Precision Unit

Figure 92 illustrates how this is implemented within the node. An 8-bit wide tri-state

bus (the TriState_Sel unit) is used to multiplex the twelve bit input data. By setting

control lines, this unit effectively divides by 1,2,4,8, or 16. The 12-bit add/subtract

units (fas12) and 12-bit multiplexers (muxD12) depicted on the left of Figure 92 are

used to clip the 12-bit input at the appropriate values. These values are loaded by the

host to on-chip configuration registers: Clip_Hi and Clip_Lo. The values of these

registers are determined by the value of the TSel tri-state control lines, which are

included in the node chromosome. The relationship between TSel and the Clip_Hi,

Clip_Lo registers is shown in Table 22. Note, the values of the Clip registers could be

generated on-chip since they are determined by TSel. They are downloaded by the

host program to simplify the implementation. It is also possible that they could be

used in the future to implement a tunable banded threshold.

143

Divider TSel (Tri-state

Select)

Clip_Hi

Register

Clip_Lo

Register

0 1 (11110) 127 -127

1 2 (11101) 255 -255

2 3 (11011) 511 -511

3 4 (10111) 1023 -1023

4 5 (01111) 2047 -2047

Table 22: Configuration of the Precision Unit

There is an additional component in the Precision Unit that cannot be seen in Figure

92. It is a programmable absolute value operation that is controlled by a single bit

included in the node chromosome. The absolute value is necessary for some of the

spatial processor configurations such as zero-sum linear convolution texture

measures. In this case, the absolute value of the output image contains the most useful

information. This is similar to using the absolute value to estimate the magnitude of

the edge response discussed earlier.

6.5.2 Incorporating Band Selection

One of the main motivations in applying AFE to multi-spectral data processing is to

select the appropriate spectral channels of the image cube that are relevant to a

particular problem. In our case, it is desirable that a node input has the potential of

receiving input from any image channel. To accommodate a variable number of

channels, the tri-state bus resources of the Virtex FPGA are used to implement large

multiplexers. Local memory resources of the Firebird RCC dictated an upper limit of

12 8-bit channels. The 12-input channel chooser is illustrated in Figure 93.

There are 8 tri-state buses associated with each node input: 1 tri-state bus is associated

with each bit in the 8-bit data. Each bus may be driven by any 1 of the 12 input

channels which is determined by setting the tri-state control lines, TSel, in Figure 93.

TSel is mapped to an on-chip register and is included in the network chromosome.

144

Figure 93: The 12-band Channel Chooser

6.6 Evolutionary Algorithm

The Multi-Spectral Network Node, and its configuration registers have been described

in detail. How the EA is applied to these configuration registers is now described.

6.6.1 Representation

Some components of the configuration are naturally suited to binary string

representation. Others, such as the additive and multiplicative coefficients are best

evolved on an arithmetic level. Table 15 describes the chromosome components, how

they relate to the configuration registers, and how genetic mutation is applied.

Both Spectral and Spatial Processors have BITSTRING and INT components. The

additive coefficients are stored in the hardware registers using two's complement

representation. For the multiplicative coefficients, a sign bit is used (MSB). The

Precision component is represented by an UNSIGNED integer, which is translated

into tri-state control lines and clip-registers described previously in Table 18. The

Band Selection chromosome is also an UNSIGNED integer in the range

{1:NumBands}, with a maximum range of {1:12}.

145

Chromosome

in Software

Configuration Registers

in CC

Mutation Strategy

Spectral and Spatial Processors

BIT Func

BIT Morph

BIT Mux/Abs

Binary bit

Binary bit

Binary bit

Bit flip

Bit flip

Bit flip

INT Sum_Coef[4]
Two's Complements form of:

Sign(Sum_Coef[i])*2|Sum_Coef[i]| ±1 in range {–7 to 7}

INT Mult_Coef[4]
Sign Bit Representation of

Mult_Coef[i]
±1 in range {–7 to 7}

Precision Unit: 2 Per Node

UNSIGNED Divider
Tri-state control lines and

Clip Registers (Table 18)
±1 in range {0 to 4}

BIT Abs Binary Bit Bit flip

Channel Chooser: 4 Per Node (Input layer nodes only)

UNSIGNED Band Tri-state control lines
±1 in range {1 to Number of

Bands in Training Data}

Table 23: Software Chromosome for Spatial-Spectral Processing Node

Similar to the hardware implementation, the software chromosome is stored

hierarchically in a number of objects. This is illustrated in Figure 94. The Mutation

and Crossover commands originate in the Population object in the host program

presented in Chapter 5. They are passed to a Network object, which then distributes

them to particular Node objects, which themselves are decomposed into their

constituent parts.

Figure 94: Decomposition of Representation in Chromosome Objects

146

6.6.2 Mutation

When nodes are incorporated within networks, each node has an equal chance of

being mutated. Once a node has been selected, mutation can be applied in a variety of

ways most easily visualized as a mutation tree. For each Mutate command sent by the

Network object there is a probability of a particular branch being taken. This is

illustrated in Figure 95. Within each component, mutation points are chosen with

equal probability. The choice of probabilities is fairly arbitrary and is based on

familiarity with the chromosome and experimentation.

Figure 95: Hierarchical Implementation of Mutation

For nodes on the input-layer of a network, the configuration for 4 Channel Choosers

is also included within the node chromosome. If an input-layer node receives a Mutate

command, there is a 20% chance that this will randomly mutate one of the 4 inputs to

the node. The remaining 80% of the time, mutation is applied according to Figure 95.

6.6.3 Crossover

Crossover within the node is applied in a similar way to mutation and is illustrated in

Figure 96. In this case there is a 50% chance that the crossover is applied to the

spectral component and 50% chance the spatial component. Within these components,

crossover points are chosen with equal probability.

The crossover operator for a two-layer network adds another level to the hierarchy

and is illustrated in Figure 97. First, one of 3 crossover points in the first layer is

selected. Then there is a 70 % chance that all 1st layer nodes to the left of the

crossover point are swapped between parents. The remaining 30% of the time,

147

crossover occurs with all nodes to the left, but then crossover is also passed into the

node. The crossover point within the node is then chosen according to Figure 96.

Figure 96: Hierarchical Implementation of Crossover

Regardless of where the crossover occurs in the 1st layer, there is a 50% chance that

the 2nd layer node is swapped between the parents. Again of this 50%, half the time

the entire node configuration is swapped and the other half of the time, the crossover

point is selected within the node.

Figure 97: Crossover in the Network

6.7 Experiments with Two-Layer Networks

Hardware design, like software, is an incremental process. The first network to be

implemented was a two-layer / 5 node network illustrated in Figure 98. This network

was implemented to make preliminary investigation of the network approach and

verify implementation accuracy before synthesis, and place-and-route times became

too large. This section describes an experiment that dictated several design choices in

the larger 3-layer network described in the next chapter.

148

The top-level architecture described in Chapter 5 was used for the implementation and

Channel Choosers were not implemented. The training data is limited to 4 image

channels, which are tied directly to the 4 inputs of the node. For the two-layer

network, each node received the same 4 inputs. The two-layer network was able to

meet 66Mhz-timing requirements. A more detailed discussion of implementation is

given in Chapter 7 with respect to the larger 3-layer network that was eventually

implemented.

Figure 98: The Two Layer / 5 node network

6.7.1 Experiment

The chromosome for the 2-layer network is approximately 5 times as big as the node

chromosome. It was therefore of interest to compare EA optimization of the 2-layer

network with 5 independent optimizations of the single node. In the second case, four

evolutionary runs are performed on the training data, resulting in 4 node

configurations and 4 output images. A 5th node is then optimized using the 4 output

images as training data.

The training image for the comparison is shown in Figure 99. It was taken by the

IKONOS instrument and has 4 channels (3 visible and near infra-red). The IKONOS

instrument has 1m spatial resolution and therefore spatial information is essential in

obtaining accurate AFE. The problem of Figure 99 is to find the roads. This is thought

to be a relatively easy problem for which networks should be able to obtain relatively

high scores. Since fitness is expected to improve substantially in the evolutionary run,

this problem is a good candidate to test EA strategies. The IKONOS data sets were

149

used extensively in developmental experiments for the node, examples of which can

be found in Appendix A.

Figure 99: IKONOS Road Finder Training Data and Target Classifications

6.7.2 Evolutionary Algorithm

The chromosome used in the independent evolution is the node chromosome

previously described. For the 2-layer network, the chromosome is made up of 5 node

chromosomes and is therefore 5-times larger. How mutation is applied to both node

and network was also described. For both network and single node experiments, a

generational EA with elitism is used with the schedule summarized in Table 24.

EA Parameter Number

Population Size 300

Number of Generations 50

Parents 200

Reproduction

Elite 20

Mutated Elite 60

Crossover 100

Mutation 100

Random Generation 20

Table 24: EA Parameters Used

6.7.3 Results and Discussion

Figure 100 shows the output when nodes were independently optimized. The best first

layer score was 961 and this was increased to 970 by the output node. When the

150

network was optimized as a whole, the final output reached a score of 961, the same

score achieved by a single node using independent evolution. This is illustrated on the

left of Figure 101 Note, the training time for the single node experiment is 5 times as

long as the training time for the network. This is because the single node experiment

evolved 5 nodes in series. For this reason, the network was also evolved for 5 times

the number of generations. The result of this optimization is seen on the right in

Figure 101, and reached a score of 964.

Figure 100: Results of Independent Node Evolution

Figure 101: Result of Network Evolution

It can be seen that the independent evolution of multiple nodes outperformed the

network evolution. It is likely this result is due to the much larger search space

associated with the network. Additionally, many components of the network

chromosome are dependent. A first layer node may perform extremely well but will

not receive reward if the output node is not properly configured. This implies a more

151

complex evolutionary search technique is required. This problem has appeared often

in literature and many researchers have proposed more complex evolutionary

strategies. Some of these are described in the next Chapter.

An immediate solution, suggested by the two-layer network experiments, is to

calculate a fitness score for each node independently. This would enable the

independent evolution of 4 network nodes to be performed in parallel by using the

first layer of the two-layer network. This motivated the implementation of multiple

fitness units in the three-layer network: one for each node.

In addition, it can be seen that using independent evolution allowed the output from

each node to be retrieved and inspected. This is potentially a very useful thing;

especially for understanding how an optimized network solves a particular AFE

problem. This dictated the use of additional local memories on the Firebird CC for

storing the output from each node and is described in more detail in Chapter 7.

152

6.8 Chapter Summary

This chapter has presented a novel network node suitable for multi-spectral image

processing. The node extends the architectures of Chapter 5, and defines a search

space for AFE which is both:

1. Hardware efficient in terms of FPGA implementation: The node is built from

small arithmetic units and multiplexers that are well matched to the Virtex

FPGA.

2. Well motivated for the problem: The node architecture draws considerably

from human inspired design spaces that are used to solve practical image-

processing problems in literature.

Properties of the node that are novel include:

• A combination of spectral classification techniques with spatial enhancement

and feature extraction algorithms, in a self contained, modular design. This

means hybrid feature extraction/classification architectures that are scalable,

inherently parallel and easily implemented.

• A novel combination of neural network, morphological network and IF-

THEN-ELSE in a hybrid Morphological-Linear building block for spectral

classification.

• A novel use of the hybrid Morphological-Linear building blocks for spatial

filters. The family of linear spatial filters seen in convolutional neural

networks can be implemented. Additionally, the equally useful family of non-

linear morphological spatial filters can be implemented.

• Also, the unique organization of the building blocks in the spatial processor

encourages rotationally invariance and allows extraction of edge and texture

information.

153

Chapter 7

Experiments with POOKA

In this chapter the multi-spectral node developed in Chapter 6 is used in a 3-layer

network implementation known as POOKA5. This chapter evaluates the network both

in terms of efficiency of implementation, as well as quality of AFE algorithm.

The preliminary experiments reported at the end of Chapter 6 dictated several

extensions to the top-level architecture and host program. The extensions to the

Fitness Evaluator architecture are reported in Section 7.1. The revised host program

and Evolutionary Algorithm are then presented in Section 7.2. A detailed evaluation

of the FPGA resources and measurement of speed-up compared to software is made

in Section 7.3.

The next two sections are experimental. The first experiment, in Section 7.4, applies

POOKA to the 3 multi-spectral test problems of Chapter 5. A comparison is made of

EA strategies for optimizing the network. In Section 7.5.1, POOKA is compared to a

number of other AFE techniques using a previously published test-set. The other

techniques include the advanced spatio-spectral GENIE software system described in

the Literature Review as well as more conventional spectral classifiers: The Spectral

Angle Mapper and a Maximum Likelihood classifier. Limitations of the Section 7.5.1

test-sets lead to more detailed exploration of POOKA's generalization performance

and convergence behavior in Section 7.5.2.

5 Concurrent to this thesis several software AFE systems were developed at Los Alamos National
Laboratory. The various systems adopted names from mythology including GENIE, AFREET and
MARID. POOKA is the name of a mythical ghost horse, and with the promise that hardware could
provide significant horse-power to AFE problems, the name has stuck!

154

This chapter concludes in Section 7.6 with a novel application that is made possible

by the revised top-level architecture. This application involves using POOKA to

evolve algorithms for multiple features of interest in parallel.

7.1 Top-Level Architecture

POOKA is a 3-layer, 9-node network implementation that is illustrated in Figure 102.

Similar to the two-layer network, there are 16 independent inputs to the network and

therefore 16 Channel Choosers are required. Each node in the second layer receives

input from the four outputs of the first layer. It can be seen in Figure 102 that the

order of inputs for second layer nodes is kept constant. This means the first input of

the I5 node is the same first input for I6, I7 and I8 nodes.

Figure 102: The 3-Layer Network

Not shown in Figure 102, is the fact that all node outputs are made available to the

top-Level architecture. This can be seen in the revised Top-Level architecture in

Figure 103. The output from each node is passed through to the top-level for two

reasons:

1. The node output is sent to on-board memory. The host program can then

retrieve the individual node outputs. In the two-layer experiment, this was

155

found to be useful in understanding how the network is solving a particular

problem. In Figure 103, it can be seen that the outputs from the first 2 layers of

the network are sent to another Firebird local memory, Local Memory 4.

2. Each node output is also sent to an independent Fitness Metric unit. This was

also motivated by the experiment using two-layer networks. In Figure 103, the

additional Fitness Metric units are implemented within the Fitness8

component.

Figure 103: Top-Level Architecture for 3-layer Network

Figure 103 also illustrates the addition of 4 Node Select components, one for each

node in the first layer of the network. There are 4 Channel Choosers implemented

within each NodeSelect, one for each input to the node. A maximum of 12 spectral

channels, stored in Local Memories 1 and 2, input to the Channel Choosers.

Another extension, which is used in experiments of Section 7.6, is the use of multiple

target classifications (truth and weight images). A total of 9 target classifications are

156

loaded to Local Memory 1, one for each node of the network. Each target

classification is a 2-bit pixel image, 1 bit indicating truth and 1 bit indicating weight.

Therefore, a data path of 18-bits is required to Local Memory 1 to implement this

extension. The 9 target classifications are supplied independently to the 9 Fitness

Metric units. Usually the target classification associated with each node is the same.

In this case, 9 copies of the target classification are stored in Local Memory 1.

7.2 Host Program and Evolutionary Algorithm

Several extensions to the host program and evolutionary algorithm were also

implemented. There is a large quantity of work, directed at evolving neural network

architectures, partly due to the rapid increase in search space size as the network

grows [76]. For the POOKA architecture, some of these techniques are more

appropriate than others. An immediate observation is made: calculating an

independent fitness for each node suggests implementing multiple populations. The

revised host program architecture is illustrated in Figure 104

Figure 104: Host Program using multiple populations

157

At the top-level, the host program is very similar to that described in Chapter 5. A

new object Evolver is introduced, which instantiates 9 independent Population

objects, one for each node in the network. For each evaluation the Evolver chooses a

particular node from each population. These nodes are configured in the network

Generalized Chromosome and evaluation takes place as normal. The Evolver then

retrieves the fitness score associated with each node, and assigns it to the appropriate

chromosome in the Population objects. Each Population maintains a population of

Node chromosomes independently. Reproduction and genetic operators are only

applied to nodes within the same population. The Mutation and Crossover node

operators described in Chapter 6 are used. By keeping populations of nodes

independent, specialization of nodes is encouraged.

Multiple populations and independent Fitness Metric units allows efficient

implementation of Incremental Learning techniques that were described in the

Literature Review. Incremental evolution of the POOKA network in Figure 102 is a

3-stage process:

1. The four 1st layer nodes are evolved in parallel in four different populations.

Since a fitness metric is calculated on the output from each node, these

populations can be evolved independently.

2. In the second stage, the best 1st layer nodes in each population are configured

and remain fixed. The 4 nodes in the 2nd layer are then evolved independtly in

4 populations.

3. In the third stage, the best 2nd layer nodes are also configured. Both 1st and 2nd

layer nodes remain fixed and only the output node is evolved.

To maximally utilize the fitness evaluator resources, all 9 nodes should be involved in

evolution at all times. This is not possible with the Incremental Learning approach,

and some nodes remain fixed while others are evolved. It is possible to evolve higher

layer nodes while lower-level nodes are evolved. This means the 1st, 2nd and 3rd

layers are evolved in Stage 1. Only the 2nd and 3rd are evolved in Stage 2 and just the

3rd layer in Stage 3. This is illustrated in Figure 105 for clarity. The arrows in this

figure indicate that optimization of the node configuration is based on the nodes

output.

158

This can produce unpredictable fluctuations in the higher-layer scores, since the data

they are supplied with can vary from one evaluation to the next. At the start of the

network evolution there is another affect. That is, reward is given to nodes that simply

pass the data on. They are rewarded for the high scores from the lower layers and

therefore not the processing they perform.

Figure 105: 3 Stage Incremental EA

After Incremental Evolution, a variable number of Optimization Cycles are applied.

This is motivated by the fact that nodes that may not score well individually can be

very useful within the network and in fact may lead to better scores in the final output.

This is the main reason why competition is not the only factor in network

optimization, and co-operative behavior is desired. Various mechanisms have been

suggested for implementing this with varying levels of complexity. The Optimization

Cycle approach used in POOKA is most similar to the method suggested in [73].

In the Optimization Cycle, nodes receive reward based on the final network output.

There are 9 stages to the optimization cycle, 1 for each node in the network. The

network is configured with the best nodes from each population that were found in the

incremental development phase. Each node in the network is then evolved in turn

using the fitness calculated on the final network output. This is illustrated for clarity

in Figure 106.

Figure 106: The 9 Stage Optimization Cycle

159

Variants of this scheme introduce greater flexibility in the choice of network nodes

that a particular node is combined with in each stage. For example, in POOKA the

best nodes from other populations are used while a particular node is evolved. This is

called the greedy strategy in [73]. Another alternative is to randomly select the other

nodes for a particular stage. In [75], more complex bookkeeping keeps track of good

combinations of nodes and allocates fitness accordingly. It can be seen that the

Optimization Cycle makes inefficient use of the fitness evaluator architecture.

However, in terms of the EA it is possible that the Optimization Cycle enables a more

efficient search of network configurations. This is explored further in experiments in

Section 7.4.

7.3 Evaluation of POOKA Implementation

7.3.1 Resource Usage

The 9-node, 3-layer network was implemented at 50MHz. The resource estimates

from both Synthesis and Place and Route software are summarized in Table 25. It can

be seen that post synthesis the usage was estimated at 45%, while after place and

route it grows to 64%. This indicates there is significant room to optimize the design.

All components of the network and fitness evaluator architectures were designed with

structural VHDL to which placement constraints can be applied. This effectively

allows the design to be manually placed, which would bring the 64% usage closer to

45%. Manually placing the design would also allow higher clock rates to be achieved.

Resource Number Percent of chip
Post Synthesis
Number of SLICES 8706 out of 19200 45%
Post Place and Route
Number of SLICES 12427 out of 19200 64%
Number of BLOCKRAMs 56 out of 160 35%
Number of Tri-state buffers 2256 out of 19520 11%

Table 25: POOKA Resource Usage

Note also that even with row buffering POOKA only required 35% of the on-chip

RAM resources available on the Virtex 2000E FPGA. This suggests larger spatial

160

neighborhoods could be implemented and is discussed further in the Discussion in

Chapter 8.

7.3.2 Evaluation of Speed-up

Evaluating speed-up of the CC implementation compared to software

implementations is a difficult problem since raw processing speed is not the only

factor. The quality of the feature extraction algorithm must also be compared. The

network architecture presented is a unique and an entirely novel approach to AFE and

therefore several comparisons are presented.

The first comparison compared the CC evaluation time to a software simulation of the

POOKA network. The results are summarized in Table 26. The hardware evaluation

times were averaged from runs involving 100 chromosomes evolving for 10

generations. Software evaluation times were averaged from runs involving 10

chromosomes, evolved for 2 generations on a 500 MHz Pentium III workstation. Both

CC and software implementations were applied to training data sizes ranging from

65k-pixels through to 1M-pixels (the maximum size that can be loaded to the Firebird

local memory).

Image Size (pixels)
Software

Evaluation Time

(Seconds)

RCC

Evaluation Time

(Seconds)

Speedup

65536 2.7 0.0016 1687

131072 5.4 0.0029 1862

262144 10.9 0.0055 1981

524288 21.7 0.0105 2066

1048576 43.2 0.0201 2149

Table 26: Evaluation Times for Software and RCC Implementations

The speed-up of the CC implementation over the software implementation is reported

in the far right of Table 26. The large values obtained are due to the fact that the

network architecture was designed particularly for implementation on CC. For

example, the spatial operator uses a large number of Arith-Morph-Mux units that

incorporate flexibility at a very low level. To implement equivalent behavior in

software, many conditional statements must be included within nested loops. As a

161

result, the software compiler has few optimizations available to it and the

performance is poor. This is therefore an optimistic upper bound on speed-up.

A possibly more meaningful measure of performance can be estimated by considering

a high-level approximation of network components. In this case, the quality of

algorithm is not considered, but rather the execution time of a particular chromosome.

For the software, execution time was estimated by implementing a number of

optimized image processing operators. For each Spectral Processor in the network, a

linear combination was used. For each Spatial Processor, a 5 by 5 neighborhood

average was calculated. The software experiment therefore performed a total of 9

linear combinations of 4 images and 9 neighborhood averages. The execution times

and relative speed-up are summarized in Table 27.

This software implementation is slightly simpler (and less powerful) than the CC

implementation. This experiment can be considered to give a pessimistic lower bound

on speed-up. Actual speed-up falls in between these two bounds, that is, in the range

100-2000 times a 500MHz Pentium III implementation.

Image Size (pixels)
Software

Evaluation Time

(Seconds)

RCC

Evaluation Time

(Seconds)

Speedup

65536 0.18 0.0016 112

131072 0.36 0.0029 124

262144 0.71 0.0055 129

524288 1.39 0.0105 122

1048576 2.75 0.0201 136

Table 27: Evaluation Times for Software and RCC Implementations

It can be seen that POOKA obtains a speed-up of two orders of magnitude compared

to a software implementation of similar complexity running on a 500 MHz Pentium

III workstation. This speedup illustrates the potential of using POOKA within a real-

time AFE system. Note, the software implementation used in the comparison does not

necessarily produce comparable AFE solutions. In Section 7.5, POOKA is compared

to software AFE techniques that are generally more computationally intensive and

therefore speedup would be expected to be larger for these cases.

162

7.4 Comparing EA Strategies

In this section, investigation is made of the POOKA EA strategy described in Section

7.2. In this experiment, three EA strategies are compared:

1. Standard EA: This is the strategy that was used in Chapter 5 and in

experiments with the 2-layer network in Chapter 6. The entire network is

represented by one chromosome (9 node chromosomes). Fitness is only

calculated on the final output of the network and therefore, the Fitness Metric

units associated with internal nodes were not used. Crossover in this case is

similar to the strategy described in Chapter 6 for the two-layer network. In this

case, a second crossover point is also selected in the second layer, and the

same mechanism is used.

2. Incremental EA: This strategy was described in Section 7.2. There are 3 stages

to the evolution, one for each network layer.

3. Incremental EA + Optimization Cycle: This is the extension of the

Incremental EA, also described in Section 7.2. After Incremental Learning,

each node is taken in turn and evolved for some time with fitness based on the

final network output.

To compare the efficiency of the evolutionary search, the execution time for the 3

strategies was made approximately the same. The standard EA evolved a population

of 200 networks for 120 generations. For the Incremental EA, evolution was for 60,

40 and 20 generations for the 1st, 2nd and 3rd layers respectively. For Incremental +

Optimization, the 1st, 2nd and 3rd layers were evolved for 30, 20 and 10 generations

respectively for Incremental learning. Optimization was then applied to each node in

turn, and total optimization time is approximately 60 generations.

POOKA was applied to the Water, Golf and Urban feature finding problems

introduced in Chapter 5. All 3 strategies were applied in 5 independent runs for each

problem. The best, mean and standard deviation of the 5 scores produced by

optimized networks are summarized in Table 24. The average execution time for each

strategy is also reported in Table 24. It can be seen that the Incremental Learning

163

strategies out performed the standard EA for the more difficult problems. For the

remainder of the thesis, the Incremental Learning approach with optimization is used.

Standard: 50 s Perfect Classification: 1000 Best Mean S.D.
Water 1000 1000 1000 1000 999 1000 999.8 0.44
Golf 994 992 990 994 992 994 992.1 1.56
Urban 888 958 947 942 945 958 935.9 27.68
Incremental: 41 s
Water 1000 1000 1000 1000 1000 1000 1000.0 0.04
Golf 994 993 991 992 990 994 991.9 1.43
Urban 968 958 961 960 965 968 962.4 4.04
Incremental + 1 Op Cycle: 38 s
Water 1000 1000 1000 1000 1000 1000 1000.0 0.04
Golf 992 994 993 993 990 994 992.2 1.36
Urban 963 974 958 969 970 974 966.8 6.30

Table 28: Comparison of EA strategies

For comparison with the Morphological and Neural Network experiments of Chapter

5, POOKA was re-optimized and applied to the 3 test problems. In this case, a

population of 100 was evolved for approximately 360 generations. Incremental

Learning was applied for 120 generations, followed by 2 optimization cycles,

equivalent to an additional 240 generations. This resulted in an execution time

comparable to the time taken by Chapter 5 experiments. It can be expected that better

performance could be achieved with a longer evolution. However, this experiment is

concerned with comparing the POOKA architecture to the Morphological and Neural

Network architectures that were explored in Chapter 5. A detailed investigation of

convergence is made in Section 7.5.

The results on the training and test images are reported in Tables 29 through 31 for

the water, golf and urban problems respectively. The fitness found at each node in the

network is also shown to illustrate how successively higher scores are achieved with

each layer. An effect of the optimization cycle is algorithm pruning. Nodes that do not

affect the final network output are assigned a score of 500. Examples of this can be

seen in Table 29.

164

Water 1st Layer 2nd Layer Output Output Image

Training

500 596

500 500

500 1000

1000 1000

1000

Testing

500 536

500 500

500 999

999 999

999

Table 29: Results on Chapter 5 Water Problem

165

Golf Course 1st Layer 2nd Layer Output Output Image

Training

981 972

976 994

951 963

983 500

999

Testing

947 972

960 993

750 737

970 500

994

Table 30: Results on Chapter 5 Golf Problem

166

Urban Areas 1st Layer 2nd Layer Output Output Image

Training

614 537

656 962

943 950

500 500

979

Testing

601 551

719 953

919 932

500 500

959

Table 31: Results on Chapter 5 Urban Area Problem

167

7.4.1 Discussion

POOKA demonstrated promising results for the 3 test problems, particularly the urban

area finder, where spectral networks of Chapter 5 had difficulty. Figure 107 illustrates

the output images produced by each node when applied to the urban-area training

image. Also included in this figure are some of the parameters found by the EA. For

clarity, only a portion of the network configuration is shown. The 3rd node in the 1st

layer implements a linear combination of morphological ring operators that seems to

characterize the urban texture well. The output from this node is then enhanced in the

2nd layer. This can be seen in the output of the 2nd and 3rd nodes in the 2nd layer. These

nodes apply functions of the 5 by 5 ring. The output from these nodes appears to be

the main contributor to the output node. This node implements a function of the 3 by

3 ring.

Figure 107: Urban Feature Finder Algorithm

Note that sometimes nodes are not used in producing the final network output.

Examples of these can be seen on the right hand side of Figure 107. These nodes

become apparent during the optimization phase of evolution. If the network score

does not change, as different internal nodes are evaluated it is likely the node does not

contribute. In POOKA, this results in a node with low fitness being used since the last

168

node to be evaluated for a particular generation is often randomly generated. For

example, it can be seen the far right nodes for the urban finder received a score of

500. This is useful for identifying non-contributing nodes without having to inspect

the optimized chromosome.

7.5 AFE Quality Comparison

In this experiment POOKA is compared to software AFE algorithms using a test-set

presented by Harvey in [142]. In this work a test set of 4 features was used to compare

the GENIE system with more conventional remote-sensing classification algorithms.

In this work, the conventional classifiers such as Maximum Likelihood and Spectral

Angle Mapper, are applied only to the spectral dimension. The GENIE system used

both spectral and spatial information. Both the GENIE system and spectral classifiers

were described in the Literature Review.

Due to the stochastic nature of EA optimization, more robust performance can be

expected by using multiple optimizations for a particular problem. In the comparison

of [142], the GENIE system, which also uses an EA approach, is only applied once.

Therefore, in the experiments to be described, the POOKA architecture is only

optimized once for each problem. The EA schedule is similar to that used in the

previous section and is summarized in Table 32.

EA Parameter Number

Population Size 100

Parents 80

Incremental Learning (generations) 120

2 Op Cycles (generations) 240

Reproduction

Elite 10

Mutated Elite 20

Crossover 60

Mutation 90

Random Generation 10

Table 32: EA Schedule for AFE Comparison

169

A target classification is specified for 3 different scenes for each of the four features.

Figure 108 illustrates one of the three scenes, and corresponding target classification

for each feature: A) clouds, B) golf courses, C) roads and D) urban areas. The images

are from the simulated MTI data set [141], are 512 by 512 pixels in size and have 10

spectral channels.

A) Atlanta 1: Clouds

B) Denver 1: Golf Courses

170

C) Denver 7: Roads

D) Denver 9: Urban

Figure 108: Example Training Images for A) Clouds, B) Golf Courses, C) Roads and D) Urban

POOKA is applied to all features, using each target classification in turn. The

accuracy of the 12 optimized networks is summarized in Table 33. For each feature, a

network trained on a particular scene is then applied to the remaining two scenes. The

result on these out-of-sample target classifications is reported in Table 34.

171

Feature Measure Scene 1 Scene 2 Scene 3
Scene Name Arm Site 6 Denver 7 Moffet Field 1

Roads Fitness 898 941 978
Detection Rate 91.5% 94.7% 99.7%

False Alarm Rate 12% 6.6% 4.2%
Scene Name Denver 4 Denver 9 Moffet Field 1

Urban Fitness 989 977 984
Detection Rate 99.2% 99.1% 98.7%

False Alarm Rate 1.3% 3.6% 1.8%

Scene Name Denver 1 Kennedy
Space Center 2 Moffet Field 1

Golf Fitness 994 1000 994
Detection Rate 99.9% 100% 100%

False Alarm Rate 1.1% 0% 1.2%

Scene Name Atlanta 1 Atlanta 2 Clouds 1
Clouds Fitness 999.9 999.8 999.9

Detection Rate 100% 100% 99.9%
False Alarm Rate 0% 0% 0%

Table 33: Results of POOKA optimization on Training Data

Feature Measure
Scene 1

applied to
Scene 2

Scene 1
applied to
Scene 3

Scene 2
applied to
Scene 1

Scene 2
applied to
Scene 3

Scene 3
applied to
Scene 1

Scene 3
applied to
Scene 2

Roads Fitness 669 786 585 868 639 751
DR 98.6% 99.2% 91.7% 92.2% 39.9% 51.3%
FA 64.9% 41.9% 74.6% 18.6% 12.2% 1.0%

Urban Fitness 919 781 918 818 887 729
DR 97.6% 59.7% 98.9% 99.9% 79.3% 46.9%
FA 13.8% 3.6% 15.3% 36.4% 2.0% 1.1%

Golf Fitness 500 508 548 517 782 500
DR 0.0% 1.6% 100.0% 100.0% 100.0% 100.0%
FA 0.0% 0.1% 90.3% 96.5% 43.5% 99.9%

Clouds Fitness 997 993 999.8 987 995 993
DR 99.5% 99.4% 100.0% 99.0% 99.9% 99.9%
FA 0.1% 0.8% 0.0% 1.6% 1.0% 1.3%

Table 34: POOKA networks of Table 26 applied to Test Data

Figure 109 compares the POOKA results tabulated above with scores reported by

several other classifiers reported in [142]. The other classifiers are GENIE, described

in the Literature review, which uses a combination of spatial and spectral information.

Results from Maximum Likelihood and Spectral Angle Mapper (SAM) are also

172

included but these techniques were applied directly to the image cubes and therefore

only spectral information is used.

AFE Comparison

500

550

600

650

700

750

800

850

900

950

1000

Train Test Train Test Train Test Train Test

Roads Urban Golf Clouds

Problem

POOKA
GENIE

Max. Likeli
SAM

Figure 109: Comparison of POOKA performance to other classifiers.

7.5.1 Discussion

GENIE outperformed POOKA in almost all problems. This was not surprising due to

the complexity of software algorithms available in the GENIE operator pool. For each

problem, GENIE evolved 50 chromosomes for 1000 generations (unless a perfect

classification of 1000 was reached) and took anywhere from 4 (when scores of 1000

were reached) to 12 hours to complete. In contrast, each POOKA optimization took 3

minutes and 40 seconds for each problem. It took 5 seconds to initialize the Firebird

and load training images. A total of 214 seconds in evolution was made up of 73

seconds of incremental learning, and two 71-second optimization cycles.

In terms of generalization, the GENIE and POOKA approaches seemed to provide

more robust solutions for out-of-training images. This was expected due to the

combination of spectral and spatial processing available to these techniques. It can be

seen that this was not true for POOKA on the golf course problem. POOKA had low

classification error on the training images but very poor performance on the test

images. While this result at first appears discouraging, it is suggested that this

173

indicates a problem in the test set and not POOKA's generalization ability. Only 1

training image was used for optimization, and each system was only optimized once

for each problem. Furthermore, each scene was taken from significantly different

geographic locations over extended periods of time. While the ultimate goal is to

develop algorithms that can perform well over the space of such conditions, it is

generally accepted that training data should be representative of the problem space. It

is therefore claimed that this test set makes it difficult to assess the generalization

ability of any of the pattern recognition systems. In addition, the stochastic nature of

EA means that some runs are better than others and is particularly true when the

training data has been poorly sampled. This is supported by the fact that POOKA had

excellent generalization performance on the smaller golf course problem in the

previous section.

174

7.5.2 Additional Experiments

To make a more accurate assessment of POOKA’s generalization ability, an

experiment is formulated that attempts to provide a better sampling of the input

distributions. In this experiment, a fourth scene is introduced for each problem. The 4

scenes are then divided into two images by tiling non-overlapping portions from each

scene. This means that part of each of the 4 scenes is represented, leading to a more

accurate sampling of the problem space. The tiled input images and training data for

each of the four problems, clouds, golf courses, urban areas and roads are illustrated

in Figures 110, 111, 112 and 113 respectively.

Figure 110: Cloud Problem (from left): Tiled image 1 and training data, Tiled image 2 and
training data.

175

Figure 111: Golf Course Problem (from left): Tiled image 1 and training data, Tiled image 2 and
training data.

176

Figure 112: Urban Area Problem (from left): Tiled image 1 and training data, Tiled image 2 and
training data.

177

Figure 113: Road Problem (from left): Tiled image 1 and training data, Tiled image 2 and
training data.

For this experiment a comparison is made between three pattern recognition systems.

The first is the GENIE system, described previously, which evolves a population of

100 chromosomes for 100 generations. The second system, known as AFREET, is

based on a recently introduced class of pattern recognizers known as Support Vector

Machines (SVM). SVM have been developed from recent advances in statistical

learning theory and have gained considerable interest for pattern recognition problems

since they have guaranteed bounds on generalization error. The AFREET system has

explicit measures to help generalization, and therefore is an excellent candidate with

which to compare generalization performance. A detailed description of these explicit

measures is beyond the scope of this thesis, but readers are referred to Vapnik's

pioneering work on the topic [143]. Similar to GENIE, AFREET is a hybrid

architecture system with a stochastic feature selection stage, followed by a SVM

178

classifier [144]. The feature selection stage contains a rich variety of both spatial and

spectral algorithms similar to the GENIE operator pool.

Convergence of EA optimization techniques is difficult to define. For this reason

POOKA was applied to all problems at 4 different levels of effort, which are detailed

in Table 35. However the question arises, can better performance be expected with

even greater effort? Fitness verse generation plots can provide subjective answers to

this question. Figure 114 presents this measure for the Road 1 problem at extreme

effort. Low, Medium and High levels of effort reach generation 118, 360, and 840

respectively. It is suggested that with a high to extreme level of effort, the POOKA

optimization procedure can be considered to have converged.

Effort Level Low Medium High Extreme

Execution Time 34.7 seconds 3.2 minutes 15 minutes 56 minutes

Population 50 100 200 200

Generations 120 240 240 480

Optimization Cycles 1 2 6 12

Table 35: Levels of effort in application of the POOKA system.

600

650

700

750

800

850

900

950

1 501 1001 1501 2001 2501 3001

Generations

F
it

n
es

s

Figure 114: Fitness verse generations for the Road 1 problem at extreme effort.

All systems were trained on each tiled image, for each problem, in turn. The result is

then applied to the second image for each problem to obtain an out-of-sample test

179

score. The results on the training images are summarized in Table 36. The average

training time for the GENIE system was 19 hours. The AFREET system sub-samples

the training data prior to optimization. For this reason, execution time does not

depend on the training image size, as in the other systems, but rather the problem

difficulty. Execution times varied from 9 minutes through to 50 minutes and averaged

19 minutes for all the problems. The performance on the test images is summarized in

Table 37.

Training POOKA GENIE AFREET
Image Low Medium High Extreme (Avg 19 hrs) Time (minutes)

Cloud 1 997.6 999.4 1000 1000 999.9 995.7 10.3
Cloud 2 994 994.9 999.8 999.5 998.6 998.7 9
Golf 1 992.3 995 998.8 997.2 997.3 999.7 9.3
Golf 2 996.1 998.7 999 999.7 998.7 997.9 13.8
Urban 1 881.6 974.3 983.9 987 992.1 984.7 25.3
Urban 2 947 982.6 991.3 993.2 996.5 992 12.3
Road 1 818.3 878.8 892.6 898.2 911 903.6 50
Road 2 904.1 930 917.6 925.4 944.6 935.9 22.7

Table 36: Fitness Scores achieved on Training Data

Training POOKA GENIE AFREET
Image Low Medium High Extreme

Cloud 1 989 968 981.4 991 978.5 819.6
Cloud 2 995 995 997.2 997.3 999.9 971.3
Golf 1 836.5 962 987 971.4 823.5 966.7
Golf 2 977.6 984 986 987 968.6 998.7
Urban 1 852 957.5 948 947.4 973.2 980
Urban 2 817.2 858.3 922.5 946 936.2 943.5
Road 1 837.4 897.3 883.8 909.3 935.5 913.7
Road 2 800.8 855.9 847.9 816.6 869.7 838.2

Table 37: Fitness Scores achieved on Testing Data

The results of Tables 36 and 37 are summarized in Figures 115 and 116. For each

problem, the two training scores are averaged to produce a single figure for the

problem. Similarly for Figure 116, the two test image scores are averaged to produce

a single result. In addition, Table 38 shows the training and testing scores that were

achieved when the POOKA system is applied with 8 different random seeds to the

Road 1 problem. This experiment was conducted to investigate the variability of the

POOKA system at the different levels of effort.

180

750

800

850

900

950

1000

Cloud Golf Urban Road

Problem

F
it

n
es

s

Low

Medium

High

Extreme

GENIE

AFREET

Figure 115: Summarized results for training images

750

800

850

900

950

1000

Cloud Golf Urban Road

Problem

F
it

n
es

s

Low

Medium

High

Extreme

GENIE

AFREET

Figure 116: Summarized results for test images.

Run 1 2 3 4 5 6 7 8 Average S.D.
Low

Training 785.6 835.2 837 813.5 793.4 802.6 845.8 774.7 811 26.2
Testing 798.3 866.4 827.2 827.2 816.5 796 893 790.5 826.9 36.1
Medium
Training 878.5 904.8 901.7 859.4 912.7 880 831.8 872.3 880.2 26.6
Testing 896.7 858 894.2 890 910.9 903.7 876.3 890.3 890 16.5
High

Training 902 908.9 873.6 909.6 883.3 902.3 901.6 884.2 895.7 13.4
Testing 901.6 911.1 899.4 928.5 906.9 895.2 916.6 865 903 18.7

Extreme

Training 894.1 922 899 897.9 871.9 925.4 902 903.7 902 16.7
Testing 871.5 917.1 914.4 909.6 896 913.2 911.1 916.3 906.2 15.5

Table 38: Fitness Scores over 8 runs for the Road 1 problem (Tested on Road 2).

181

7.5.3 Further Discussion

Overall, the POOKA results are promising. With low effort, the POOKA performance

was poor on both training and test images. This is indicative of the increased

difficulty of the problems, and therefore does not measure the true capacity of the

POOKA system. With increased effort, the POOKA system shows potential as a

practical pattern recognition system. Test data results indicate that POOKA has good

generalization ability. This is particularly evident in the simpler cloud and golf course

problems, where POOKA appears not to over-fit, even when an extreme amount of

effort is applied. Also, for most of the problems, a higher accuracy on the training

data has resulted in a higher accuracy on the test set.

For the more difficult problems, POOKA is usually outperformed on the training data

by the GENIE and AFREET systems. This indicates that POOKA may lack

classification power for difficult training data, compared to the software systems.

POOKA has a fixed number of nodes with which it can work, and therefore this is not

surprising. In contrast, both GENIE and AFREET systems are able to form extremely

complex algorithms to fit training data. It is hypothesized that the limited resources of

the POOKA system may be responsible for its good performance on test data,

however it does limit the application of POOKA to more difficult problems.

The results of Table 38 indicate there is variation in performance from one run to the

next, particularly at low levels of effort. While this is expected from an evolutionary

algorithm system, an interesting direction for future research would be to find EA

strategies that can reduce this variation. It can be seen for high-levels of effort the

variation is reduced, which indicates that a more efficient EA search strategy may

help with this problem. In addition, it is noted that for two of the runs at extreme level

of effort, POOKA actually obtained higher training data scores than both the GENIE

and AFREET systems. While this indicates that POOKA has potentially sufficient

classification power, the difficulty in obtaining these scores is a problem. A more

efficient EA strategy would help with this problem. Another solution would be to

increase the classification power of the system, hence providing a richer solution

space that could potentially be searched more easily.

182

To improve the POOKA system, it is concluded that the classification power should

be increased. The fact that the system has a fixed set of resources for problems of

varying levels of difficulty may also be a limitation, and a more flexible use of the

POOKA resources may be appropriate. Ways of increasing the classification power of

the POOKA system are described in Chapter 8. At the same time, it is known that

increasing classifier complexity can lead to problems of over-fitting. Therefore, it is

suggested that including explicit measures to help generalization would be beneficial

in a more complex POOKA system. This is a topic of future research, but some

directions are also included in Chapter 8.

7.6 Parallel Evolution of Multiple Features

In this section an interesting application, made possible by the multiple fitness metrics

is described. Section 7.1 briefly described how the top-level POOKA architecture was

extended to load 9 target classifications into on-board memory. These 9 target

classifications are supplied independently to the 9 Fitness Metric units. Up to this

point, only one target classification has been used and therefore 9 duplicate copies of

the target classification have been stored. This flexibility in target classifications can

be used to optimize different nodes for different features of interest. This can be

useful in exploiting relationships between high-level features in an image. For

example, if the feature of interest is beach, it is possible that first finding the water in

the image is useful.

The beach example is used to demonstrate the principle. The training data is a 3-

channel image, from the KSC instrument. Two networks are optimized. For the first

network, all nodes were optimized using the beach target classification illustrated in

Figure 117B. For the second network, 2 target classifications were supplied. The 1st

and 4th nodes in the first layer were optimized using the water target classification of

Figure 117C. The remaining nodes were optimized for the beach target.

183

Figure 117: A) Original Image B) Beach target and C) Water target

The node outputs from the two optimized networks are illustrated in Figure 118A and

B respectively. One run was used to optimize both networks, and a better result was

obtained by using the multiple target classifications. Inspection of the optimized

chromosome also reveals that the water classification of Node 4 in the 1st layer was

indeed used in subsequent layers to produce the final network output. Although it is

likely that a network optimized with just the beach classification can solve the

problem just as well, this outcome demonstrates the potential of the approach.

184

Network 1 Network 2

Layer 1 Layer 1

1 2 3 4 1: Water 2: Beach 3: Beach 4: Water

Layer 2 Layer 2

Output Node Output Node

Figure 118: A) Single beach classification and B) Multiple target classifications

It is possible, that the multiple target classification technique could be of potential

benefit in more subtle ways. For example, it is often desirable to make a complete

scene classification where every pixel in the image is classified assigned to one of

several classes. If a network has sufficient nodes, evolving feature finders for these

classes in parallel may be better than developing feature finders independently. This

technique could potentially benefit from a software implementation, where variable

numbers of nodes or sub-networks could be dynamically allocated to features

depending on classification difficulty. However, ways of incorporating such

flexibility by using flexible tri-state routing of target classifications can be imagined.

185

7.7 Chapter Summary

This chapter has put many of the ideas developed in previous chapters to test. A 3-

layer network of multi-spectral processing nodes was implemented. This network

used approximately 65% of the Firebird resources, and was applied to image data sets

with two orders of magnitude speedup compared to software of similar complexity.

A comparison of AFE accuracy was made with several software techniques. POOKA

AFE showed promising results compared to the spatio-spectral GENIE software

system, with the advantage of reasonable optimization times, and at least two-orders

of magnitude speed-up in data throughput. The novel contributions of this chapter are:

• A Fitness Evaluator implementation using distributed fitness metrics that

allows independent populations of network nodes to be optimized in parallel.

• A comparison of EA strategies in terms of search efficiency in CC. The EA

strategies included standard EA, incremental learning, and a co-evolution type

optimization cycle.

• A comparison was made between the POOKA approach and other

classification techniques. Results suggest increasing the capacity of the

POOKA system may be necessary for more difficult problems.

• Hardware accelerated evolution of multiple features in parallel was used to

leverage high-level information.

186

Chapter 8

Discussion

8.1 Summary of Contributions

This thesis has presented a new approach to hardware AFE using a combination of

Evolutionary Algorithms and Custom Computers. Throughout the course of the thesis,

novel contributions have been described at the end of each chapter in Chapter

Summaries. The following is an abbreviated list of the more significant contributions

made by each chapter.

Chapter 3

The Generalized Chromosome and Hardware Reuse

Chapter 3 presented design choices and considerations useful to a wide range of

EA implementations using Custom Computers. The idea of Generalized

Chromosomes and methods of hardware reuse are believed particularly useful to

modern FPGA devices where Rapid Reconfigurability is not available.

Chapter 4

Novel Maximally Parallel Architectures

Chapter 4 presented several algorithmic variants that can be efficiently

implemented on FPGAs. Algorithm decomposition of Cellular Automata, led to

the hybrid XC6216 CA model, which could be efficiently implemented and also

allowed problem specific constraints to be easily applied. Novel thresholding

strategies for stack filters were also suggested and explored.

187

Chapter 5

Comparison of Neural Network and Morphological Networks

Chapter 5 has made one of the first objective comparisons of morphological and

neural networks for solving practical problems. Comparisons were made both in

terms of the hardware resources required for implementation as well as the quality

of classification algorithm.

Chapter 6

A Novel Multi-Spectral Network Node

• A self contained, modular network node capable of both feature extraction and

classification was developed for multi-spectral image processing.

• The use of hybrid morphological-linear building blocks enabled the

implementation of many traditional image-processing algorithms and

classification techniques.

• The well-motivated arrangement of these building blocks was able to

implement a rich variety of hybrid linear/nonlinear spatial filters.

Chapter 7

POOKA Implementation and Experiments

• The implementation of distributed Fitness Metrics improved the efficiency

of search for the evolutionary network architectures in hardware.

• A comparison in terms of search efficiency was made between Incremental

Learning and Co-evolutionary (Optimization cycles) EA strategies.

• A comparison was also made of POOKA to advanced spatio-spectral

software solutions and more traditional spectral classification techniques.

• The use of POOKA for evolving multiple features in parallel was

demonstrated.

8.2 Towards POOKA II

In comparison to other techniques, POOKA results were encouraging, but they also

indicated there is room for improvement. An optimized POOKA implementation

presented in Chapter 7 requires approximately 45% of the resources available on the

188

Firebird CC. Several other Custom Computers are being produced with even greater

computational resources. This section proposes additions and extensions to the

POOKA architecture that will require additional resources, but may lead to improved

performance.

The experiments of Chapter 7 led to the conclusion that the POOKA system would

benefit from increased classification power. Sections 8.21 through 8.24 suggest

mechanisms by which this could be increased within the context of the POOKA

architecture. At the same time, it is well known that increasing the complexity of the

classifier can also lead to the problem of over-fitting. It is likely that with a substantial

increase in classifier capacity, explicit measures to control generalization would be

required. Specific steps towards this goal are discussed in Sections 8.2.5 through

8.2.7.

8.2.1 Multi-Spectral Data Sets

The fundamental aspect of multi-spectral data sets addressed in this thesis was the

combination of spectral and spatial processing. However, the field of remote sensing

defines a large number of algorithms that could also be incorporated to improve

performance on particular problems.

One operation that was described in the Literature Review, and considered

particularly useful is the band ratio. It is possible to include this operation within the

node itself with a generalized arithmetic pipeline described in Chapter 3. However,

this building block is substantially larger than others used within the node and

therefore band ratios may be better implemented as preprocessors to the network.

Another consideration in practical AFE that has not been addressed in this thesis is

spatial resolution. It is possible that POOKA will be applied to a wide variety of data

sets, each with different spatial resolutions that may, or may not, be well suited to the

5 by 5 neighborhood operations that are implemented. One solution would be to

perform image re-sampling in software to produce a standard resolution prior to

loading training images. Another solution would be to dynamically resample spectral

channels from one chromosome to the next. This is particularly attractive for

189

developing algorithms that use data from multiple sensors and therefore use multiple

training images with different spatial resolutions.

A flexible preprocessor to POOKA input nodes is therefore thought desirable. This

preprocessor could be included in the network chromosome and then optimize band

ratios and spatial resolutions on a problem-by-problem basis.

8.2.2 Bit Widths

Improved performance could be expected by increasing the bit-widths, and therefore

the accuracy of network nodes. In this thesis, 8 bit data paths were used and although

this was sufficient to demonstrate the potential of the approach, larger bit-widths may

lead to improved performance. In some optimizations, POOKA found solutions where

1st layer network nodes produced almost binary outputs. This is partly due to the

limited dynamic range available to network nodes. Raw data from current multi-

spectral sensors is often fixed-point integers that use 12 to 14 bits. By using 8-bit data

paths, information is therefore lost before any processing occurs. Latest CCs have

large computational resources and these continue to grow. Larger bit-width could

therefore be implemented with the present design.

8.2.3 Extending the Spatial Processor

The Spatial Processor described in Chapter 6 was shown to include a variety of

potential useful spatial filters. The Spatial Processor was also shown to produce

rotationally invariant spatial filters by constraining the configuration to one quadrant.

While this rotational invariance is desirable, more powerful spatial filters could be

implemented by allowing asymmetric spatial functions. Examples of this, described in

the Literature Review, include Laws convolution masks, Gabor filters and linear

morphological structuring elements. With these approaches a bank of filters, each

representing a specific orientation, were used to achieve rotational invariance.

In a similar way, the Spatial Processor could be enhanced to include multiple rotated

versions of an asymmetric spatial function. In this case, all 4 quadrants of the Spatial

Processor would be included in the chromosome. Four Spatial Processors would then

190

be implemented in parallel, each using a different orientation of the configuration.

This is illustrated in Figure 119. ML represents the hybrid Morphological-Linear

building blocks. The Spectral Processor has been decomposed into the two-layer

network of these building blocks. It can be seen that they are also used to combine the

multiple rotations of the Spatial Processor into a single output.

Figure 119: Revised Spatial Processor

By increasing the computational complexity in the spatial domain, smaller band filters

are implemented in the frequency domain. This would improve the Spatial Processors

ability to discriminate between textures. The large amount of on-chip RAM available

in latest FPGAs such as the Virtex 2000E, means this approach could be incorporated

in the current design.

8.2.4 Nodes as Functions of State

Another interesting direction for future work is inspired by the work in Chapter 4. The

primary difference between the cellular architectures and the POOKA network

architecture is state. It is possible to extend the POOKA top-level architecture to

include state. Implementation is made simpler by the fact that node outputs are

already sent to the local memory of the Firebird CC. These node outputs can be

191

considered the current state of the network, and therefore returned as input to the

network to implement functions of state. This is illustrated in Figure 120.

Figure 120: A Cellular Architecture Interpretation

This implementation has several interpretations. In one sense, the network would

implement multi-layered cellular automata, where the rule set is a particular subset

drawn from image processing. In another sense, it would be similar to architectures

seen in the field of Cellular Neural Networks [145]. More accurately, POOKA would

implement a multi-layered Cellular Morpho-Linear Network.

In this implementation, a network evaluation would require multiple passes through

the image. A potential application of this seemingly computationally intensive

extension is real-time image processing. Since network nodes are a function of state,

information contained in the time domain could be exploited. This type of information

is essential for applications such as change detection.

8.2.5 Fitness Metrics

This thesis used the weighted hamming fitness metric due to its simplicity of

implementation. With this metric, only the sign of output pixels contribute to the

192

score and therefore classification error could be accumulated with single bit counters.

In theory, a better fitness metric would include some measure of how close output

pixels are to the decision boundary. An example of this fitness metric is shown in

Equation 17. This equation will produce fitness scores in the same range as the

hamming metric used in this thesis, that is, 1000 is a perfect classification.

















 −
−+

















 −
−=

∑∑
==

Min

F

n

f
nMin

Max

T

n

t
nMax

PF

PP

PT

PP

Fitness
*

)(

1*500
*

)(

1*500 11 (17)

In Equation 17, PMax and PMin correspond to the maximum and minimum of the

dynamic range, t
nP and f

nP correspond to the nth true and false pixel value

respectively and T and F are the total number of true and false pixels. With 8-bit data

paths, the perfect score (1000) would correspond to all true pixels having a value of

127, and all false pixels having a value of –127.

This fitness metric is more expensive to implement on FPGAs than the hamming

metric since the difference between the pixel value and the target values must be

accumulated. The accumulator bit-width will be larger than for the hamming metric.

However, this extra cost is well within current FPGA device capacities, and better

results, particularly in terms of generalization, may be achieved.

Another measure of fitness is inspired by the Stack Filter experiments in Chapter 4.

The novel median thresholding strategy suggests that pixels could be assigned to

classes by comparing the values from two output nodes. This technique is seen for

two class problems in neural networks. In this case, each node is associated with a

class. The output node is the posterior probability of class membership, and therefore

the pixel is assigned to the class whose node has the largest value. Based on results in

Chapter 4, this could potentially improve performance by producing a cleaner, or

smoothed, output image. This would be at the cost of implementing an additional

node.

193

8.2.6 Cross-Validation

If, after increasing the classification capacity, the POOKA system appears to over-fit

training data, cross-validation could also be used to explicitly improve generalization

performance. In cross-validation a training set is divided into two or more sets.

Training is based on the performance of one set, and generalization performance is

estimated by the error on the remaining sets. This technique is computationally

intensive in software, but would be easily implemented within the POOKA

architecture. As a first step, two fitness metric units could be associated with each

node and training data randomly divided. An appropriate tradeoff between errors

reported by the two fitness units could then be used to find a potentially more robust

solution.

8.2.7 Boosting

Another way to include implicit measures of generalization is suggested by an

algorithm known as Boosting [146]. In this scenario, POOKA would be known as a

weak-learner and would be optimized many times for the same problem. The outputs

from each POOKA optimization would then be combined with a weighted sum to

produce a final output. This essentially leads to a much more complex classifier. The

interesting result from boosting is that this complexity can be increased almost

arbitrarily, yet excellent generalization performance is still observed. A key

mechanism to the boosting algorithm is an adaptive re-weighting of the training data,

which depends on the performance of the previous weak-leaner. To incorporate this

within the POOKA architecture, a new fitness metric unit would be required that is

capable of weighting the error calculated from each pixel.

194

8.3 Conclusion

Evolutionary Algorithms and Custom Computers have been used independently for a

number of years. More recently, these fields have been combined in Evolvable

Hardware which means mutual benefit: the long computation times of Evolutionary

Algorithms is avoided, and Custom Computer building blocks can be easily

optimized. This new design environment seems ideal for producing high performance

hardware for solving difficult problems.

This thesis has demonstrated the potential of this design environment for the problem

of Automatic Feature Extraction in multi-spectral data sets. In essence, this thesis

presents a characterization of the AFE problem in terms of algorithms/theory and

Custom Computer hardware resources. This hybrid approach is essential to solving

problems of practical interest with Evolvable Hardware.

It should be evident from the large number of potential directions described in Section

8.2 that the future of POOKA is considered bright. This is partly due to the problem

addressed. The need for hardware accelerated AFE is felt most in multi-spectral

image processing where large volume data sets continue to grow and software poses a

computational bottleneck. In other applications, this need is not as great; software

speeds are acceptable and algorithm accuracy is the primary requirement.

Another problem, where a POOKA-like approach may be appropriate, is autonomous

navigation for real-time robotics. In this case, it is conceivable POOKA could be

applied directly at the sensor to find regions of interest in real-time, to be used within

a larger robot controller system.

195

Appendix A

Chapter 6 Developmental Experiments
This section describes some of the more interesting experiments that were performed

in the design of the multi-spectral network node of Chapter 6.

A.1 Experiments with Chromosome Representation

The complexity of the node representation leads to the question of how the EA should

be best applied. One approach is to directly apply the EA to the chromosome

components described in detail in Chapter 6. However, the functionality of the node,

particularly the spatial processor, is inspired from image processing algorithms. This

suggests an alternative representation that introduces structure to the representation by

constraining node configurations to predefined types. Table A-3 describes the

different types considered for the structured representation. Chromosomes are

initialized by randomly selecting both a Spectral and Spatial type. Both components

are then configured randomly within a subset of configurations associated with each

type. A typed Mutation is also implemented, with predefined constraints that maintain

the component type during evolution. This is also a probability that a component can

change type with mutation during evolution.

196

Spectral Type Constraints Evolved Parameters

Linear Combination AMM configured as average Mult_Coefs, Sum_Coefs

Maximum AMM configured as maximum Mult_Coefs, Sum_Coefs

Minimum
AMM configured as minimum Mult_Coefs, Sum_Coefs

Random No constraints Entire configuration

Spatial Type

Average Rings configured as average Mult_Coefs, Sum_Coefs

Maximum
Rings configured as average. Shape of neighborhood through

multiplexers

Minimum
Rings configured as average Shape of neighborhood through

multiplexers

Edge
Rings configured as edge

magnitude

Mult_Coefs, Sum_Coefs

Texture: Laws
Rings configured as average or

edge

Mult_Coefs, Sum_Coefs

Texture:

Morphological

Rings configured as maximum

or minimum

Mult_Coefs, Sum_Coefs

Random No Constraints Entire configuration

Table A-3: Types associated with Node Components

Figure A-1: IKONOS Road Images and Target Classifications: from left Ik1 through Ik3.

197

Figure A-1 illustrates the problem used to test the EA strategies. These are from the

IKONOS instrument, have 4 multi-spectral bands (3 color and 1 near infra-red) and

high spatial resolution (1 meter per pixel). The problem is to find the roads in the

image. This test problem is of moderate difficulty and therefore a single node could

potentially do well. The EA schedule used in these experiments is shown in Table A-

4.

EA Parameter Number

Population Size 100

Parents 80

Generations 100

Reproduction

Elite 10

Mutated Elite 20

Crossover 60

Mutation 90

Random Generation 10

Table A-4: EA Schedule

Random EA Perfect Classification: 1000
Training Mean S.D.

ik1 949 960 956 959 952 958 957 953 949 961 955 4.4
ik2 960 964 960 963 966 961 963 970 962 967 964 3.24

Testing
Ik1-ik2 945 959 960 957 957 956 955 954 958 957 956 4.18
Ik1-ik3 953 919 936 877 901 914 935 921 960 936 925 24.5
Ik2-ik1 934 932 934 921 936 922 938 943 939 936 934 7.03
Ik2-ik3 952 954 958 956 940 949 950 920 946 954 948 11.1

Structured EA
Training Mean S.D.

ik1 946 940 948 939 938 938 948 951 944 948 944 4.88
ik2 958 965 954 952 961 964 958 955 952 956 958 4.62

Testing
Ik1-ik2 956 944 948 944 929 945 955 950 951 944 947 7.63
Ik1-ik3 948 942 897 909 928 924 918 964 955 957 934 22.4
Ik2-ik1 901 933 899 888 924 933 923 905 894 893 909 17.2
ik2-ik3 949 958 950 948 959 945 910 950 949 938 946 13.8

Table A-5: Average final fitness scores for 10 runs

198

Both structured and random GA strategies were each used to evolve node

configurations in 10 independent runs. The scores achieved on both training images

and test images are summarized in Table A-5.

Discussion

The best 5 runs were taken, and averaged to produce the fitness verse generational

plot of Figure A-2. A two-tailed paired sample t-test was also used to investigate the

null hypothesis that the two EA strategies, on average, performed identically. The

training scores for both images were combined in the t-test. The p-value for the null

hypothesis on training images was 1.57e-05. This essentially means the results found

do not support the null hypothesis i.e. that the means are equal with significant

confidence.

Structured verse Random GA

900

910

920

930

940

950

960

970

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Generations

F
it

n
es

s
(B

es
t

:
10

00
)

Structured

Random

Figure A-2: Fitness verse Generations for Structured and Random Genetic Algorithms

This experiment demonstrated that the EA could be used to evolve the components of

the multi-spectral node without using high-level information. It is suggested the node

architecture itself constrains the search space enough sufficiently for most problems.

The typed approach may be more appropriate if an EA is to be applied to larger

chromosomes representing networks of nodes, however since a multiple population

based approach was used, this was not considered further.

199

A.2 Experiments with the Precision Unit

One of the more experimental components of the multi-spectral network node is the

Configurable Precision Unit. The motivation for incorporating flexibility within the

Precision unit is that limited resources within the FPGA, such as data-path widths, can

be optimized by the EA. In this section the idea is explored further by investigating

two types of precision units. The first precision unit uses only the tri-state switching

logic. In this case, values do not saturate but are simply truncated to a particular 8 bits

that the EA selects. This precision unit saves approximately 30 Virtex Slices

compared to the one presented in Chapter 6. The second precision unit is the one

described in Chapter 6.

A similar experiment to A.2.1 was performed on the IKONOS road finder problems.

The two types of Precision unit were implemented. Each node was evolved in 10

separate runs using the evolutionary algorithm parameters described in the previous

experiment. The results of the experiment are shown in Table A-6.

Precison Unit with Truncation Perfect Classification: 1000
Training Mean S.D

ik1 941 910 894 908 923 893 907 940 955 924 920 21
ik2 946 957 957 956 951 947 946 953 949 938 950 6.1

Testing
Ik1-ik2 954 919 938 943 940 937 911 948 939 927 936 13
ik1-ik3 937 855 941 950 828 942 950 947 938 931 922 43
ik2-ik1 884 911 899 883 881 878 881 889 874 868 885 12
ik2-ik3 946 946 947 939 924 924 924 937 927 925 934 10

Precision Unit with Saturation
Training Mean S.D.

ik1 946 940 948 939 938 938 948 951 944 948 944 4.9
ik2 958 965 954 952 961 964 958 955 952 956 958 4.6

Testing
ik1-ik2 956 944 948 944 929 945 955 950 951 944 947 7.6
ik1-ik3 948 942 897 909 928 924 918 964 955 957 934 22
ik2-ik1 901 933 899 888 924 933 923 905 894 893 909 17
ik2-ik3 949 958 950 948 959 945 910 950 949 938 946 14

Table A-6: Results of Precision Unit Comparison

The output images, from the best solution found, for each training image are

illustrated in Figure A-3 and Figure A-4 for the Truncating and Saturating precision

units respectively. Note, although the results for each Precision unit look very similar

for both training cases, they were found on separate evolutionary runs.

200

Figure A-3: Best Results on Training Images for truncating Precision Unit (955 and 957)

Figure A-4: Best Results on Training Images for Saturating Precision Unit (951 and 965)

Discussion

The results of Table A-6 indicate a slight performance advantage, on this problem, for

the node using the Saturating Precision unit. It is interesting to note that both schemes

had approximately the same score for their best runs, seen in Figure A-3 and Figure

A-4. However, the standard deviation for the Truncating Precision unit was almost

twice the variance as the Saturating unit. This suggests that results, comparable in

quality to the Saturating Precision unit, could be found using less hardware. However,

in this case, it appears such solutions are harder to find using the same evolutionary

algorithm.

One reason the saturating precision unit may have performed more consistently is due

to the nature of classification problem. The hamming fitness metric effectively

thresholds the node output at 0 before the score is calculated. It is likely that

thresholding itself is therefore a useful operation within the node. The Saturating

Precision unit implements this thresholding much more consistently than the

201

Truncating Precision unit. In the gray-scale output of Figure A-4 (the final hamming

threshold has not been applied) it can be seen that thresholding has been used within

the node. This behavior seems well suited to binary classification, and therefore was

used in subsequent implementations.

202

Appendix B

Everything on the Chip

213

Bibliography

1. Preston, K., Cellular Logic Computers for Pattern Recognition. Computer,
1983. 16(1): p. 36-47.

2. Abramson, D., A.d. Silva, M. Randall, and A. Posutla. Special Purpose
Computer Architectures for High Speed Optimisation. in Second Australasian
Conference on Parallel and Real Time Systems. 1995. Fremantle.

3. Miller, J.F., D. Job, and V.K. Vassilev, Principles in the Evolutionary Design
of Digital Circuits - Part I. Genetic Programming and Evolvable Machines,
2000. 1(1): p. 7-35.

4. Jain, A.K., Fundamentals of Digital Image Processing. Pretice Hall
Information and System Sciences Series. 1989, New Jersey: Pretice Hall.

5. Woods, R.C.G.a.R.E., Digital Image Processing. 1993, Reading,
Massachusetts: Addison-Wesley Publishing Company.

6. Roberts, L.G., Machine Perception of Three-Dimensional Solids, in Optical
and Electro-Optical Information Processing, J.T. Tippet, Editor. 1965, MIT
Press: Cambridge, Mass.

7. Sobel, I., Camera Models and Machine Perception. 1970, Stanford Artificial
Intelligence Lab: Palo Alto.

8. Kirsch, R., Computer determination of the constituent structure of biological
images. Comput. Biomed. Res., 1971. 4: p. 315-328.

9. Gabbouj, M., E.J. Coyle, and N.C. Gallagher, An overview of median and
stack filtering. Circuits, Systems, and Signal Processing, 1992. 11(1): p. 7-45.

10. Golay, M.J.E., Hexagonal Parallel Pattern Transformations. IEEE Trans.
Comput., 1969. C-18: p. 733-740.

11. Preston, K. and M.J.B. Duff, Modern Cellular Automata. 1984, New York:
Plenum Publishing Corporation.

12. Serra, J., Image Analysis and Mathematical Morphology. 1982, New York:
Academic Press.

13. Haralick, R.M., S.R. Sternberg, and X. Zhuang, Image Analysis Using
Mathematical Morphology. IEEE Trans. Pattern Anal. Machine Intell., 1987.
PAMI-9(4): p. 532-550.

214

14. Maragos, P. and R.W. Schafer, Morphological Filters - Part II: Their
Relations to Median, Order-Statistic, and Stack Filters. IEEE Transactions on
Acoustics, Speech and Signal Procesing, 1987. ASSP-35(8).

15. Yli-Harja, O., J. Astola, and Y. Neuvo, Analysis of the Properties of Median
and Weighted Median Filters Using Threshold Logic and Stack Filter
Representation. IEEE Transactions on Signal Processing, 1991. 39(2): p. 395-
410.

16. Yu, P. and W. Liao, Weighted Order Statistics Filters - Their Classification,
Some Properties, and Conversion Algorithm. IEEE Transactions on Signal
Processing, 1994. 42(10): p. 2678-2691.

17. Wendt, P.D., E.J. Coyle, and N.C. Gallagher, Stack Filters. IEEE Transactions
on Acoustics, Speech and Signal Procesing, 1986. 34(4): p. 898-911.

18. Bovik, A.C., T. Huang, and D. Munson, A generalization of median filtering
using linear combinations or order statistics. IEEE Trans. Acoust., Speech,
Signal Processing, 1983. 31: p. 1342-1350.

19. Heinonen, P. and Y. Neuvo, FIR-median hybrid filters. IEEE Trans. Acoust.,
Speech, Signal Processing, 1987. 35: p. 832-838.

20. Astola, J. and P. Kuosmanen, Fundamentals of Nonlinear Digital Filtering.
1997, New York: CRC Press.

21. Schowengerdt, R.A., Remote Sensing. Models and Methods for Image
Processing. 2 ed. 1997, San Diego: Academic Press.

22. Green, A.A., M. Berman, P. Switzer, and M.D. Craig, A Transformation for
Ordering Multispectral Data in Terms of Image Quality with Implications for
Noise Removal. IEEE Transactions on Geoscience and Remote Sensing, 1988.
26(1): p. 65-74.

23. Haralick, R.M., Statistical and Structural Approaches to Texture. Proceedings
of IEEE, 1979. 67: p. 786-809.

24. Haralick, R. and K. Shanmugam, Combined spectral and spatial processing of
erts imagery data. Remote Sensing of Environment, 1974. 3: p. 3-13.

25. Laws, K.I. Texture energy measures. in Proceedings of Image Understanding
Workshop. 1979.

26. Pietikainen, M., A. Rosenfeld, and L.S. Davis, Experiments with Texture
Classification Using Averages of Local Pattern Matches. IEEE Transactions
on Systems, Man and Cybernetics, 1983. SMC-13(3).

27. Jain, A.K. and F. Farrokhnia, Unsupervised Texture Segmentation using
Gabor Filters. Pattern Recognition, 1991. 24(12): p. 1167-1186.

215

28. Weska, J.S., C.R. Dyer, and A. Rosenfeld, A Comparative Study of Texture
Measures for Terrain Classification. IEEE Transactions on Systems, Man and
Cybernetics, 1976. SMC-6(4).

29. Ojala, T., M. Pietikainen, and D. Harwood, A Comparative Study of Texture
Measures with Classification Based on Feature Distributions. Pattern
Recognition, 1996. 29(1): p. 51-59.

30. Buf, J.M.H.D., M. Kardan, and M. Spann, Texture Feature Performance for
Image Segmentation. Pattern Recognition, 1990. 23(3): p. 291-309.

31. Randen, T. and J.H. Husoy, Filtering for Texture Classification: A
Comparative Study. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1999. 21(4): p. 291-309.

32. Tuceryan, M. and A.K. Jain, Texture Analysis, in The Handbook of Pattern
Recognition and Computer Vision, L.F.P. C.H. Chen, P.S.P. Wang, Editor.
1998, World Scientific Publishing Co. p. 207-248.

33. Matheron, G., Random Sets and Integral Geometry. 1975, New York: John
Wiley and Sons.

34. Maragos, P., Pattern Spectrum and Multiscale Shape Representation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1989. 11(7): p.
701-716.

35. Dougherty, E.R., An Introduction to Morphological Image Processing.
Tutorial texts in Optical Engineering, ed. D.C. O'Shea. Vol. TT9. 1992,
Washington: SPIE Optical Engineering Press.

36. Dougherty, E.R. and Y. Chen, Granulometric Filters, in Nonlinear Filters for
Image Processing, J.T.A. E.R. Dougherty, Editor. 1999, SPIE Optical
Engineering Press / IEEE Press: New York.

37. Gratin, C., J. Vitria, F. Moreso, and D. Seron. Texture classification using
neural networks and local granulometries. in 2nd International Conference on
Mathematical Morphology. 1994. Fontainebleau: Kluwer Academic
Publishers.

38. Aubert, A., D. Jeulin, and R. Hashimoto. Surface Texture Classification from
Morphological Transformations. in 5th International Symposium on
Mathematical Morphology. 2000. Palo Alto, California: Kluwer Academic
Publishers.

39. Duda, R.O., P.E. Hart, and D.G. Stork, Pattern Classification. 2 ed. 2001,
New York: John Wiley & Sons Inc.

40. Fukunaga, K., Introduction to Statistical Pattern Recognition. 1990, San
Diego: Academic Press.

216

41. Bishop, C.M., Neural Networks for Pattern Recognition. 1995, Oxford:
Oxford University Press.

42. Kruse, F.A., A.B. Lefkoff, J.B. Boardman, K.B. Heidebrecht, A.T. Shapiro,
P.J. Barloon, and A.F.H. Goetz, The Spectral Image Processing System (SIPS)
- Interactive Visualization and Analysis of Imaging Spectrometer Data.
Remote Sensing of Environment, 1993. 24: p. 145-163.

43. Richards, J.A. and X. Jia, Remote Sensing Digital Image Analysis. 1999:
Springer-Verlag.

44. Rosenblatt, F., Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms. 1962, Washington D.C.: Spartan.

45. Rumelhart, D.E., G.E. Hinton, and R.J. Williams, Learning Internal
Representations by Error Propagation, in Parallel Distributed Processing:
Explorations in the Microstructures of Cognition, D.E.R. et.al, Editor. 1986,
MIT press: Cambridge, Mass. p. 318-362.

46. Lippman, R.P., An introduction to computing with neural nets. IEEE ASSP
Magazine, 1987. 4: p. 4-22.

47. Fukushima, K., Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biol. Cybern,
1980. 36: p. 193-202.

48. LeCun, Y. and B. Boser, Convolutional networks for images, speech and time
series, in The Handbook of Brain Science and Neural Networks, M. Arbib,
Editor. 1995, MIT Press: Cambridge, MA. p. 255-258.

49. Won, Y. and P.D. Gader. Morphological Shared-Weight Neural Network for
Pattern Classification and Automatic Target Detection. in IEEE International
Conferenec on Neural Networks. 1995.

50. Tomassini, M., A Survey of Genetic Algorithms. Annual Reviews of
Computational Physics. Vol. III: World Scientific.

51. Dasgupta, D. and Z. Michalewicz, Evolutionary Algorithms in Engineering
Applications. 1997, Berlin: Springer-Verlag.

52. Holland, J., Adaptation in Natural and Artifical Systems. 1975, Cambridge,
MA: MIT Press.

53. Golberg, D.E., B. Korb, and K. Deb, Messy Genetic Algorithms: Motivation,
analysis, and First Results. Complex Systems, 1989. 3(5): p. 493-530.

54. Schwefel, H.P., Evolution and Optimum Seeking. Sixth-Generation Computer
Technology Series. 1995, New York: John Wiley & Sons.

217

55. Koza, J.R., Genetic Programming of Computers by Means of Natural
Selection. 1992, Cambridge, Massachusetts: MIT Press.

56. Koza, J.R., Genetic Programming II. Automatic Discovery of Reusable
Programs. 1994, Cambridge, Massachusetts: MIT Press.

57. Golberg, D., Genetic Algorithms in Search, Optimization and Machine
Learning. 1989: Addison-Wesley.

58. Banzhaf, W., P. Nordin, R.E. Keller, and F.D. Francone, Genetic
Programming, An Introduction. 1998, San Francisco: Morgan Kaufmann
Publishers Inc.

59. DeJong, K., Analysis of Behaviour of a Class of Genetic Adaptive Systems.
1975, University of Michigan: Ann Arbor, MI.

60. Deb, K. and D. Goldberg. An investigation of niche and species formation in
genetic function optimization. in Proceedings of the Third International
Conference on Genetic Algorithms. 1989: Morgan Kaufmann.

61. Grosso, P., Computer Simulations of Genetic Adaptation: Parallel
Subcomponent Interaction in a Multilocus Model. 1985, University of
Michigan: Ann Arbor, MI.

62. Kraft, P., N.R. Harvey, and S. Marshall, Parallel genetic algorithms in the
optimization of morphological filters: a general design tool. Journal of
Electronic Imaging, 1997. 6(4): p. 504-516.

63. Chu, C. The application of an adaptive plan to the configuration of nonlinear
image processing algorithms. in Nonlinear Image Processing. 1990: SPIE.

64. Campbell, N.W. and B.T. Thomas, Automatic Selection of Gabor Filters for
Pixel Classification. 1995.

65. Saito, H. and M. Mori, Application of genetic algroithms to stereo matching in
images. Pattern Recognition Letters, 1995. 16: p. 815-821.

66. Harris, C. and B. Buxton. Evolving edge detectors with genetic programming.
in Genetic Programming 1996, Proceedings of the First Annual Conference.
1996. Cambridge, Massachusetts: MIT Press.

67. Hollingworth, G., A. Tyrrell, and S. Smith. Simulation of Evolvable Hardware
to Solve Low LEvel Image Processing Tasks. in Evolutionary Image Analysis,
Signal Processing and Telecommunications. 1999. Goteborg, Sweden:
Springer.

68. Ebner, M. and A. Zell. Evolving a task specific image operator. in
Evolutionary Image Analysis, Signal Processing and Telecommunications.
1999. Goteborg, Sweden: Springer.

218

69. Whitley, D., S. Dominic, R. Das, and C. Anderson, Genetic Reinforcement
Learning for Neurocontrol problems. Machine Learning, 1993. 13: p. 259-
284.

70. Floreano, D. and F. Mondada, Automatic creation of an autonomous agent:
Genetic evolution of a neural network driven robot., in From Animals to
Animats 3: Proc. 3rd Int. Conf. Simulation of Adaptive Behaviour, D.C. J.A.
Meyer, P. Husbands, S. Wilson, Editor. 1994, MIT Press: Cambridge.

71. Harvey, I., P. Husbands, and D. Cliff, Seeing the light: Artificial evolution,
real vision, in From Animals to Animats 3: Proc. 3rd Int. Conf. Simulation of
Adaptive Behaviour, J.A.M. D. Cliff, S. Wilson, Editor. 1994, MIT Press.

72. Gurau, F., Automatic definition of sub-neural networks. 1994, Labortatoire de
I'Informatique du Parallelism, Ecole Normale Superieure de Lyon: Lyon,
France.

73. Potter, M.A. and K.A.D. Jong. Evolving Neural Networks with Collaborative
Species. in Proceedings of the 1995 Summer Computer Simulation
Conference. 1995. Ontario, Canada.

74. Meeden, L., An Incremental approach to developing intelligent neural
network controllers for robots. IEEE Transactions on Systems, Man and
Cybernetics: Part B, 1996. 26(3): p. 474-485.

75. Moriarty, D.E. and R. Miikkulaiinen, Forming Neural Networks through
Efficient and Adaptive Coevolution. Evolutionary Computation, 1998. 5(4).

76. Yao, X., A review of evolutionary artificial neural networks. International
Journal of Intelligent Systems, 1993. 8(4): p. 539-577.

77. Daida, J.M., J.D. Hommes, T.F. Bersano-Begey, S.J. Ross, and J.F. Vesecky,
Algorithm discovery using the genetic programming paradigm: Extracting
low-contrast curvilinear features from SAR images of artic ice, in Advances in
Genetic Programming 2, K.E.K. P.J. Angeline, Editor. 1996, MIT:
Cambridge.

78. Buckles, B.P., F.E. Petry, D. Prabhu, and M. Lybanon, Mesoscale Feature
Labeling from Satellite Images, in Genetic Alorithms for Pattern Recognition,
P.P.W. S.K. Pal, Editor. 1996, CRC Press Inc. p. 167-175.

79. Theiler, J., N.R. Harvey, S.P. Brumby, J.J. Szymanski, S. Alferink, S. Perkins,
R. Porter, and J.J. Block. Evolving Retrieval Algorithms with a Genetic
Programming Scheme. in Proc. SPIE. 1999.

80. Perkins, S., J. Theiler, S.P. Brumby, N.R. Harvey, and R.B. Porter. GENIE: A
Hyrbid Genetic Algorithm for Feature Classification in Multispectral Images.
in Proc. SPIE. 2000.

219

81. Han, J., C. Moraga, and S. Sinne, Optimization of feedforward neural
networks. Engineering Applications of Artificial Intelligence, 1996. 9(2): p.
109-119.

82. Cross, A.D.J., R. Myers, and E.R. Hancock, Convergence of a hill-climbing
genetic algorithm for graph matching. Pattern Recognition, 2000. 33(11): p.
1863-80.

83. Xilinx, I., The Programmable Logic Data Book. 1994, Xilinx Inc.

84. Altera, Flex 10KE Product Data Sheet. 2001.

85. Xilinx, I., XC6200 Field Programmable Gate Arrays. 1997, Xilinx Inc.

86. Xilinx, Virtex Configuration Architecure: Advanced User's Guide. 1999,
Xilinx Inc.

87. Mazor, S., A Guide to VHDL. 2nd ed. 1993: Kluwer.

88. Xilinx, Xilinx Announces Microblaze: World's Fastest FPGA Soft Processor.
2001.

89. Xilinx, Xilinx aligns with industry leaders to announce platform FPGA
initiative. 2001.

90. Bertin, P., D. Roncin, and J. Vuillemin, Programmable Active Memories: a
Performance Assessment. 1993, DIGITAL Paris Research Laboratory.

91. Buell, D.A., J.M. Arnold, and W.J. Kleinfelder, Spash 2: FPGA's in a Custom
Computing Machine. 1996, California: IEEE Computer Society Press.

92. Corporation, G.O., SPECTRUM Reconfigurable Computing Platform
Documentation. 1994.

93. Robinson, S.H., M.P. Caffrey, and M.E. Dunham. Reconfigurable computer
array: the bridge between high-speed sensors and low-speed computing. in
Field-Programmable Logic and Applications. From FPGAs to Computing
Paradigm. 8th International Workshop, FPL '98. 1998. Tallinn, Estonia:
Springer-Verlag.

94. Koza, J.R. Rapid reconfigurable field-programmable gate arrays for
accelerating fitness evaluation in genetic programming. in Late breaking
papers at Genetic Programming 1997 Conference. 1997.

95. Thompson, A. Evolving Electronic Robot Controllers that Exploit Hardware
Resources. in Advances in Artificial Life: Proc 3rd ECAL. 1995: Springer-
Verlag.

96. Kajitani, I., M. Murakawa, D. Nishikawa, H. Yokoi, N. Kajihar, M. Iwata, D.
Keymeulen, H. Sakanashi, and T. Higuchi. An evolvable hardware chip for

220

prosthetic hand controller. in Proc. Seventh Int. Conf. Microelectronics for
Neural, Fuzzy and Bio-inspire Systems. 1999.

97. Murakawa, M., S. Yoshizawa, I. Kajitani, X. Yao, N. Kajihara, M. Iwata, and
T. Higuchi, The GRD Chip: Genetic Reconfiguration of DSPs for Neural
Network Processing. IEEE Transactions on Computers, 1999. 48(6): p. 628-
638.

98. Thompson, A., I. Harvey, and P. Husbands, Unconstrained Evolution and
Hard Consequences, in Towards Evolvable Hardware. 1996, Springer-Verlag.
p. 136-165.

99. Zebulum, R.S., A. Stoica, and D. Keymeulen. The design process of an
evolutionary oriented reconfigurable architecture. in 2000 Congress on
Evolutionary Computation. 2000: IEEE.

100. Haddow, P.C. and G. Tufte. An evolvable hardware FPGA for adaptive
hardware. in 2000 Congress on Evolutionary Computation. 2000: IEEE.

101. Stoica, A., D. Keymeulen, R. Tawel, C. Salazar-Lazaro, and W. Li.
Evolutionary Experiments with a Fine-Grained Reconfigurable Architecture
for Analog and Digital CMOS Circuits. in The First NASA/DoD Workshop on
Evolvable Hardware. 1999. Pasadena, California.

102. Graham, P. and B. Nelson. A hardware genetic algorithm for the travelling
salesman problem on Splash 2. in Field-Programmable Logic and
Applications. 1995: Springer: Oxford.

103. Sitkoff, N., M. Wazlowski, A. Smith, and H. Silverman. Implementing a
genetic algorithm on a parallel custom computing machine. in Proceedings
IEEE Workshop on FPGAs for Custom Computing Machines. 1995.

104. Kitaura, O., H. Asada, M. Matsuzaki, T. Kawai, H. Ando, and T. Shimada. A
custom computing machine for genetic algorithms without pipeline stalls. in
IEEE Int. Conf. Systems, Man, and Cybernetics. 1999.

105. Shackleford, B., G. Snider, R.J. Carter, E. Okushi, M. Yasuda, K. Seo, and H.
Yasuura, A High-Performance, Pipelined, FPGA-Based Genetic Algorithm
Machine. Genetic Programming and Evolvable Machines, 2001. 2: p. 33-60.

106. Tufte, G. and P.C. Haddow. Prototyping a GA pipeline for complete hardware
evolution. in Proc. First NASA/DoD Workshop on Evolvable Hardware. 1999.
Pasadena.

107. Sidhu, R.P.S., A. Mei, and V.K. Prasanna. Genetic Programming Using Self-
Reconfigurable FPGAs. in Field Programmable Logic and Applications.
1999. Glasgow, UK: Springer-Verlag.

221

108. Yamaguchi, Y., A. Miyashita, T. Maruyama, and T. Hoshino. A Co-processor
System with a Virtex FPGA for Evolutionary Computation. in Field
Programmable Logic. 2000. Austria: Springer.

109. Iwata, M., I. Kajitani, H. Yamada, H. Iba, and T. Higuchi. A Pettern
Recognition System Using Evolvable Hardware. in Proc. of Parallel Problem
Solving from Nature IV - PPSN IV. 1996. Berlin.

110. Higuchi, T., M. Iwata, D. Keymeulen, H. Sakanashi, M. Murakawa, I.
Kajitani, E. Takahashi, K. Toda, M. Salami, N. Kajihara, and N. Otsu, Real-
World Applications of Analog and Digital Evolvable Hardware. IEEE
Transactions on Evolutionary Computation, 1999. 3(3): p. 220-235.

111. Dumoulin, J., J.A. Foster, J.F. Frenzel, and S. McGrew. Special Purpose
Image Convolution with Evolvable Hardware. in Real-World Applications of
Evolutionary Computing. 2000. Edinburgh, UK: Springer.

112. Moon, S. and S. Kong, Block-Based Neural Networks. IEEE Transactions on
Neural Networks, 2001. 12(2): p. 307-317.

113. Garis, H.D. and M. Korkin, The CAM-Brain Machine (CBM): Real Time
Evolution and Update of a 75 Million Neuron FPGA-Based Artificial Brain.
Journal of VLSI Signal Processing Systems, 2000. 24: p. 241-262.

114. Figueiredo, M.A. and C. Gloster. Implementation of a Probabilistic Neural
Network for Multi-spectral Image Classification on an FPGA Based Custom
Computing Machine. in Vth Brazilian Symposium on Neural Networks. 1998.
Belo Horizonte, Brazil: IEEE Computer Society.

115. Perkins, S., R. Porter, and N. Harvey. Everything on the Chip: A Hardware-
Based Self-Contained Spatially-Structured Genetic Algorithm for Signal
Processing. in Evolvable Systems: From Biology to Hardware. 2000.
Scotland, UK: Springer-Verlag.

116. Ferguson, L. Image processing using reconfigurable FPGAs. in High-Speed
Computing, Digital Signal Processing, and Filtering Using Reconfigurable
Logic. 1996. Boston, USA: SPIE-Int. Soc. Opt. Eng.

117. Rosenfeld, A., Parallel Image Processing Using Cellular Arrays. Computer,
1983. 16: p. 14-20.

118. Kamal, A.K., H. Singh, and D. Agrawal, A generalized pipeline array. IEEE
Transactions on Computers, 1974. C-23: p. 533-536.

119. Sipper, M., The Emergence of Cellular Computing. Computer, 1999. 32(7): p.
18-26.

120. Toffoli, T. and N. Margolus, Cellular Automata Machines : A new
environment for modeling. 1987, Cambridge, Massachusetts: MIT Press.

222

121. Wolfram, S., Theory and Applications of Cellular Automata, ed. S. Wolfram.
1986, Singapore: World Scientific.

122. Mitchell, M., J.P. Crutchfield, and R. Das. Evolving Cellular Automata with
Genetic Algorithms: A Review of Recent Work. in First International
Conference on Evolutionary Computation and Its Applications (EvCA'96).
1996. Moscow, Russia.

123. Sahota, P., M.F. Daemi, and D.G. Elliman. Training Genetically Evolving
Cellular Automata for Image Processing. in International Symposium on
Speech, Image Processing and Neural Networks. 1994. Hong Kong.

124. Sahota, P., M.F. Daemi, and D.G. Elliman. Using Genetically Evolving Multi-
Layer Cellular Automata for Image Processing. in Third Golden West
Ineternational Conference on Intelligent Systems. 1995. Netherlands: Kluwer
Academis Publishers.

125. Codd, E.F., Cellular Automata. 1968, New York: Academic Press.

126. Banks, E.R. Universality in Cellular Automata. in IEEE 11th Annual
Symposium on Switching and Automata Theory. 1970. Santa Monica,
California.

127. Chen, K., Bit-Serial Realizations of a Class of Nonlinear Filters Based on
Positive Boolean Functions. IEEE Transactions on Circuits and Systems,
1989. 36(6): p. 785-794.

128. Chang, L., W. Fong, and S. Yu. A New Fast Implementation of Cellular Array
for Morphological Filters, Stack Filters and Median Filters ,. in Applications
of Digital Image Processing XV. 1992: SPIE.

129. Yu, P. and E.J. Coyle, The Classification and Assocative Memory Capability
of Stack Filters. IEEE Transactions on Signal Processing, 1992. 40(10): p.
2483-2497.

130. Lin, L., G.B.A. III, and E.J. Coyle, Stack filter lattices. Signal Processing,
1994. 38: p. 277-297.

131. Yu, P. and E.J. Coyle, Convergence Behaviour and N-Roots of Stack Filters.
IEEE Transactions on Acoustics, Speech and Signal Procesing, 1990. 38(9): p.
1529-1544.

132. Paola, J.D. and R.A. Schowengerdt, A review and analysis of backpropagation
neural networks for classification of remotely-sensed multi-spectral imagery.
International Journal of Remote Sensing, 1995. 16(16): p. 3033-3058.

133. Chung, Y.Y., M.T. Wong, N.W. Bergmann, and M. Bennamoun.
Implementing Neural Network in Custom Computers. in IEEE International
Conference on Systems, Man and Cybernetics : Conference Theme :

223

Intelligent Systems for Humans in a Cyberworld. 1998. San Diego, California,
USA: IEEE.

134. Eldredge, J.G. and B.L.Hutchings, Run-Time Reconfiguration: a method for
enhancing the functional density of SRAM-based FPGAs. Journal of VLSI
Signal Processing, 1996. 12(1): p. 67-86.

135. Sussner, P. Morphological Perceptron Learning. in Joint Conference on the
Science and Technology of Intelligent Systems. 1998. Maryland: IEEE.

136. Ritter, G.X. and P. Sussner. An introduction to morphological neural
networks. in 13th International Conference on Pattern Recognition. 1996.
Vienna, Austria.

137. Wilson, S.S. Morphological Networks. in Visual Communications and Image
Processing IV. 1989: SPIE.

138. Yang, P. and P. Maragos, Min-Max Classifiers: Learnability, Design and
Application. Pattern Recognition, 1995. 28(6): p. 879-899.

139. Radi, A. and R. Poli. Evolutionary Discovery of Learning Rules for
Feedforward Neural Networks with Step Activation Function. in Proceedings
of the Genetic and Evolutionary Computation Conference. 1999. Orlando,
Florida: Morgan Kaufmann.

140. Lin, J. and E.J. Coyle, Minimum Mean Absolute Error Estimation over the
Class of Generalized Stack Filters. IEEE Transactions on Acoustics, Speech
and Signal Procesing, 1990. 38(4): p. 663-678.

141. Weber, P.G., B.C. Brock, A.J. Garret, B.W. Smith, C.C. Borel, W.B. Clodius,
S.C. Bender, R.R. Kay, and M.L. Decker. Multispectral Thermal Imager
mission overview. in Proc. SPIE. 1999.

142. Harvey, N.R., S.P. Brumby, S. Perkins, J. Theiler, J.J. Szymanski, J.J. Block,
R.B. Porter, M. Galassi, and C. Young, Image Feature Extraction: GENIE vs
Conventional Supervised Classification Techniques. IEEE Transactions on
Geoscience and Remote Sensing, 2001.

143. Vapnik, V.N., Statistical Learning Theory. Wiley Series on Adaptive and
Learning Systems for Signal Processing, Communications, and Control, ed. S.
Haykin. 1998, New York: John Wiley & Sons, Inc.

144. S. Perkins, N.R. Harvey, S.P. Brumby, and K. Lacker. Support Vector
Machines for Broad Area Feature Extraction in Remotely Sensed Images. in
Proc. SPIE 4381. 2001.

145. Chua, L.O., CNN: A Paradigm for Complexity. 1998: World Scientific
Publishing Company.

224

146. Schapire, R.E., Y. Freund, P. Bartlett, and W.S. Lee. Boosting the margin: a
new explanation for the effectiveness of voting methods. in Proc. 14th
International Conference on Machine Learning. 1997: Morgan Kaufmann.

